

## Growth, yield and economics of sweet corn (*Zea mays L. Saccarata*) as influenced by foliar sprays of nano fertilisers

H. RAJESH<sup>1</sup>, G. S. YADAHALLI<sup>2</sup>, B. M. CHITTAPUR<sup>1</sup>, A. S. HALEPYATI<sup>1</sup> AND SHARANUGOUDA HIREGOUDAR<sup>1</sup>

<sup>1</sup>Department of Agronomy, College of Agriculture, Raichur

University of Agricultural Sciences, Raichur - 584 104, Karnataka, India

<sup>2</sup>Department of Agronomy, College of Agriculture, Vijayapur, UAS, Dharwad - 580 005, Karnataka, India

E-mails: guruyadahalli@gmail.com, rajeshhulimani@gmail.com

(Received: September, 2021 ; Accepted: November, 2021)

**Abstract:** A field study was conducted during rabi 2020-21 at ICAR-KVK, UAS, Raichur ( $16^{\circ}12'125\text{ N}$ ,  $77^{\circ}20'205\text{ E}$  and 389 m) with an objective to assess the effect of foliar sprays of nano N and nano Zn on growth and yield of sweet corn crop. The experiment was laid out in the Randomized Complete Block Design (RCBD) with thirteen different nutrient treatments consisting of chemical nano nitrogen, chemical nano zinc and green nano zinc along with two recommended dose of fertilizer and absolute control treatment. The fresh cob yield ( $158.1\text{ q ha}^{-1}$ ) and green fodder yield ( $214.5\text{ q ha}^{-1}$ ) were significantly higher with application of 75% N, 100% P & K + foliar application of chemically synthesized nano N @ 4 ml/l and chemically synthesized nano Zn @ 2 ml/l at 25 and 50 DAS, respectively. The magnitude of improvement in fresh cob yield was up to 18 per cent as compared to recommended dose of ( $150\text{ kg N}$ ,  $75\text{ kg P}_2\text{O}_5$  and  $37.5\text{ kg K}_2\text{O ha}^{-1}$ ). Plant height (225.7 cm), green leaves per plant (12.60), leaf area ( $7130\text{ cm}^2\text{ plant}^{-1}$ ), leaf area index (5.94), total dry matter accumulation ( $295.2\text{ g plant}^{-1}$ ), SPAD (61.74) and NDVI (0.80) values were significantly influenced by foliar application of nano nitrogen and nano zinc. Nitrogen uptake ( $246.2\text{ kg ha}^{-1}$ ) was higher with 75% N + foliar application of chemically synthesized nano N @ 4 ml/l and chemically synthesized nano Zn @ 2 ml/l at 25 and 50 DAS, respectively. This also recorded significantly higher gross returns ( $\text{₹ }1,26,503\text{ ha}^{-1}$ ), net returns ( $\text{₹ }77,928\text{ ha}^{-1}$ ) and B : C ratio (2.60). It was concluded that application of 75 % N, 100 % P & K + foliar application of chemically synthesized nano N @ 4 ml/l and chemically synthesized nano Zn @ 2 ml/l at 25 & 50 DAS, respectively was found optimum for sweet corn.

**Key words:** Foliar spray, Nano-urea, Nano-Zn, Sweet Corn

### Introduction

Sweet corn (*Zea mays L. saccharata*) is one of the new generation maize types which is the most popular one among the different types of maize available and is extensively used for human consumption. Sweet corn originated from Peru and presently grown extensively all over America. It has been developed with higher levels of natural sugar, which makes it very popular. It is a hybridized maize variety, specially bred to increase sugar content and is also popularly called as “sugar corn”.

It comes up well under a wide range of soil and climatic conditions, current maize yields have lot of potential to be exploited. To address all the difficulties of soil applied fertilizers like fixation, immobilization, volatilization, leaching and runoff to reduce all these losses, we should think of an alternate technology such as nanotechnology-based fertilizers to precisely detect and deliver correct quantity of nutrients and other inputs required by crops in suitable proportion that promote productivity while ensuring environmental safety.

Farmers are using urea and zinc sulphate fertilizers for soil as well as foliar application to crops; however, the efficacy is low. The present study was taken up to investigate the effects of N and Zn nano particles foliar application on growth and yield of sweet corn. Nano particles with small size and extensive surface area are expected to be the perfect forms for use as a N and Zn fertilizer in plants.

### Material and methods

The experiment was carried out at ICAR-KVK farm, University of Agricultural Sciences, Raichur, which is situated at a latitude of  $16^{\circ}15'N$ , longitude of  $77^{\circ}20'E$  and at an elevation of 389 meters above mean sea level and it comes under North Eastern dry zone of Karnataka (Zone-2). The soil of the experimental site belongs to *Vertisols* (medium black soil). The soil was low in organic carbon (0.45%), available nitrogen ( $279.2\text{ kg ha}^{-1}$ ), potassium ( $210.6\text{ kg ha}^{-1}$ ) and medium phosphorus ( $29.31\text{ kg ha}^{-1}$ ). The experiment was laid out in the Randomized Complete Block Design (RCBD) with thirteen different nutrient treatments contains of IFFCO liquid chemical nano nitrogen, IFFCO liquid chemical nano zinc and laboratory prepared liquid green nano zinc along with two recommended dose of fertilizers and absolute control treatment. These treatments were replicated thrice.  $T_1$ : Absolute control,  $T_2$ : 100% NPK ( $150\text{ kg N}$ ,  $75\text{ kg P}_2\text{O}_5$ , and  $37.5\text{ kg K}_2\text{O ha}^{-1}$ ),  $T_3$ : 100% NPK +  $25\text{ kg ha}^{-1}$   $\text{ZnSO}_4$ ,  $T_4$ : 75% N + foliar application of chemically synthesized nano N @ 4 ml/l,  $T_5$ : 50% N + foliar application of chemically synthesized nano N @ 4 ml/l,  $T_6$ : 25% N + foliar application of chemically synthesized nano N @ 4 ml/l,  $T_7$ : Foliar application of chemically synthesized nano N @ 4 ml/l,  $T_8$ :  $T_4$  + foliar application of chemically synthesized nano Zn @ 2 ml/l,  $T_9$ :  $T_5$  + foliar application of chemically synthesized nano Zn @ 2 ml/l,  $T_{10}$ :  $T_6$  + foliar application of chemically synthesized nano Zn @ 2 ml/l,  $T_{11}$ :  $T_7$  + foliar application of chemically synthesized nano Zn @ 2 ml/l,  $T_{12}$ :  $T_4$

+ foliar application of green synthesized nano Zn @ 2 ml/l and T<sub>13</sub>; T<sub>5</sub> + foliar application of green synthesized nano Zn @ 2 ml/l. The recommended package of practices (RPP)-FYM @ 10 t + 75 kg P<sub>2</sub>O<sub>5</sub> and 37.5 kg K<sub>2</sub>O ha<sup>-1</sup> will be followed for all the treatments. Foliar application of nano nitrogen and nano zinc particles will be sprayed at 25 and 50 (DAS)

### Preparation and standardization of nitrogen and zinc nano particles

Standard liquid chemical N and Zn nano particles were procured from Indian Farmers Fertilizer Co-operative Limited (IFFCO), The required concentration of standard Nitrogen nano- particles was dissolved in distilled water and kept for sonication @ 60°C for 30 min. Preparation of green nano zinc particles the spinach leaves were thoroughly washed with distilled water and dried using a solar tunnel dryer @ 40 °C for 48 hours. The dried leaves were ground using a grinder to make into a fine powder and passed through a 100 mesh sieve (150 µm). Five grams of dried powder was added to 100 ml ethanol in a 250 ml conical flask and kept for 24 hours and filtered through filter paper (Whatman No.1). The filtrate was stored at 4 °C for further process. The leaf extract of spinach (50 ml) was boiled at 60-80 °C using magnetic stirred on hot plate. Zinc nitrate hexahydrate [Zn(NO<sub>3</sub>)<sub>2</sub>.6H<sub>2</sub>O] was used as a precursor. 1 mM zinc nitrate solution was prepared using distilled water. The solution was added to the leaf extract when temperature reached to 60 °C and boiled for 30 minutes or until colour changed from dark green to pale yellow. A change in the colour indicated the formation of ZnO Nano particles (Amrita *et al.*, 2015).

### Results and discussion

The data pertaining to plant height are furnished in the Table 1. In all growth stages, significant difference in plant height of sweet corn was noticed with nano N and nano Zn particles with different levels of recommended dose of soil applied nitrogen to that of absolute control. Significantly higher plant height was observed in 75 per cent RDN + foliar application of chemically synthesized nano N @ 4 ml/l and chemically

synthesized nano Zn @ 2 ml/l at 25 and 50 DAS (58.73, 207.3 and 225.7 cm, respectively at 30, 60 DAS and at harvest), this treatment was on par with 75 per cent RDN + foliar application of chemically synthesized nano N @ 4 ml/l and green synthesized nano Zn @ 2 ml/l (55.27, 201.3 and 220.7 cm, respectively at 30, 60 DAS and at harvest) and 100 per cent NPK + 25 kg ha<sup>-1</sup> ZnSO<sub>4</sub> (52.87, 199.8 and 213.4 cm, respectively at 30, 60 DAS and at harvest). The lower plant height was observed in absolute control (33.40, 160.3 and 169.3 cm, respectively at 30, 60 DAS and at harvest) over all other treatments. Increased plant height recorded in the 75 per cent RDN + foliar application of chemically synthesized nano N @ 4 ml/l and chemically synthesized nano Zn @ 2 ml/l and 75 per cent RDN + chemically synthesized nano N @ 4 ml/l and green synthesized Zn @ 2 ml/l at 25 and 50 DAS due to adequate supply nitrogen and zinc which might have accelerated the activity of enzyme and auxin metabolism in the plant, which in turn enlarge the cell and cell elongation resulting in taller plants. This is in conformity with the works of Torres- Olivar *et al.* (2014) and Nithya *et al.* (2018).

The data pertaining to chlorophyll content by SPAD meter as influenced by foliar application of nano nitrogen and nano zinc particles with different levels of recommended dose of nitrogen is presented in Table 2. There was significant difference in chlorophyll content of sweet corn at 30 DAS with 75 per cent RDN + foliar application of chemically synthesized nano N @ 4 ml/l and chemically synthesized nano Zn @ 2 ml/l at 25 and 50 DAS (42.99) and this treatment was on par with 75 per cent RDN + foliar application of chemically synthesized nano N @ 4 ml/l and green synthesized nano Zn @ 2 ml/l at 25 and 50 DAS (41.43) and 100 per cent NPK + 25 kg ha<sup>-1</sup> ZnSO<sub>4</sub> (40.53) over rest of the treatments. Significantly lower SPAD readings were recorded in absolute control (20.44).

Significant difference in chlorophyll content of sweet corn was recorded at 60 DAS with 75 per cent RDN + foliar application of chemically synthesized nano N @ 4 ml/l and chemically synthesized nano Zn @ 2 ml/l at 25 and 50 DAS

Table 1. Plant height (cm) at different growth stages of sweet corn as influenced by foliar application of nano nitrogen and nano zinc

| Treatments                                                                                                  | Plant height (cm) |        |            |
|-------------------------------------------------------------------------------------------------------------|-------------------|--------|------------|
|                                                                                                             | 30 DAS            | 60 DAS | At harvest |
| T <sub>1</sub> : Absolute control                                                                           | 33.40             | 160.3  | 169.3      |
| T <sub>2</sub> : 100% NPK (150 kg N, 75 kg P <sub>2</sub> O <sub>5</sub> , and 37.5 kg K <sub>2</sub> O/ha) | 49.20             | 195.8  | 205.9      |
| T <sub>3</sub> : 100% NPK + 25 kg/ha ZnSO <sub>4</sub>                                                      | 52.87             | 199.8  | 213.4      |
| T <sub>4</sub> : 75% N + foliar application of chemically synthesized nano N @ 4 ml/l                       | 50.73             | 196.0  | 208.3      |
| T <sub>5</sub> : 50% N + foliar application of chemically synthesized nano N @ 4 ml/l                       | 50.00             | 193.9  | 206.7      |
| T <sub>6</sub> : 25% N + foliar application of chemically synthesized nano N @ 4 ml/l                       | 48.40             | 188.3  | 204.9      |
| T <sub>7</sub> : Foliar application of chemically synthesized nano N @ 4 ml/l                               | 44.53             | 175.0  | 199.4      |
| T <sub>8</sub> : T <sub>4</sub> + foliar application of chemically synthesized nano Zn @ 2 ml/l             | 58.73             | 207.3  | 225.7      |
| T <sub>9</sub> : T <sub>5</sub> + foliar application of chemically synthesized nano Zn @ 2 ml/l             | 51.10             | 196.6  | 207.7      |
| T <sub>10</sub> : T <sub>6</sub> + foliar application of chemically synthesized nano Zn @ 2 ml/l            | 50.33             | 187.0  | 203.3      |
| T <sub>11</sub> : T <sub>7</sub> + foliar application of chemically synthesized nano Zn @ 2 ml/l            | 46.67             | 178.4  | 195.4      |
| T <sub>12</sub> : T <sub>4</sub> + foliar application of green synthesized nano Zn @ 2 ml/l                 | 55.27             | 201.3  | 220.7      |
| T <sub>13</sub> : T <sub>5</sub> + foliar application of green synthesized nano Zn @ 2 ml/l                 | 50.60             | 189.3  | 202.4      |
| S.Em.±                                                                                                      | 2.49              | 3.5    | 4.9        |
| C.D.(P=0.05)                                                                                                | 7.27              | 10.2   | 14.4       |

Note: RD P<sub>2</sub>O<sub>5</sub> and RD K<sub>2</sub>O common for all the treatments except T<sub>1</sub> and Foliar application of nano N and nano Zn at @ 25 and 50 DAS

Growth, yield and economics of sweet corn .....

Table 2. Soil plant analysis development (SPAD) readings different growth stages of sweet corn as influenced by foliar application of nano nitrogen and nano zinc

| Treatments                                                                                                  | SPAD readings |        |            |
|-------------------------------------------------------------------------------------------------------------|---------------|--------|------------|
|                                                                                                             | 30 DAS        | 60 DAS | At harvest |
| T <sub>1</sub> : Absolute control                                                                           | 20.44         | 31.12  | 38.23      |
| T <sub>2</sub> : 100% NPK (150 kg N, 75 kg P <sub>2</sub> O <sub>5</sub> , and 37.5 kg K <sub>2</sub> O/ha) | 32.92         | 41.34  | 51.46      |
| T <sub>3</sub> : 100% NPK + 25 kg/ha ZnSO <sub>4</sub>                                                      | 40.53         | 46.28  | 58.77      |
| T <sub>4</sub> : 75% N + foliar application of chemically synthesized nano N @ 4 ml/l                       | 39.86         | 44.88  | 56.83      |
| T <sub>5</sub> : 50% N + foliar application of chemically synthesized nano N @ 4 ml/l                       | 35.18         | 43.49  | 52.91      |
| T <sub>6</sub> : 25% N + foliar application of chemically synthesized nano N @ 4 ml/l                       | 28.41         | 37.52  | 46.62      |
| T <sub>7</sub> : Foliar application of chemically synthesized nano N @ 4 ml/l                               | 23.22         | 34.12  | 40.73      |
| T <sub>8</sub> : T <sub>4</sub> + foliar application of chemically synthesized nano Zn @ 2 ml/l             | 42.99         | 50.75  | 61.74      |
| T <sub>9</sub> : T <sub>5</sub> + foliar application of chemically synthesized nano Zn @ 2 ml/l             | 36.18         | 44.78  | 53.53      |
| T <sub>10</sub> : T <sub>6</sub> + foliar application of chemically synthesized nano Zn @ 2 ml/l            | 28.90         | 40.03  | 46.40      |
| T <sub>11</sub> : T <sub>7</sub> + foliar application of chemically synthesized nano Zn @ 2 ml/l            | 24.32         | 33.80  | 42.45      |
| T <sub>12</sub> : T <sub>4</sub> + foliar application of green synthesized nano Zn @ 2 ml/l                 | 41.43         | 48.36  | 60.27      |
| T <sub>13</sub> : T <sub>5</sub> + foliar application of green synthesized nano Zn @ 2 ml/l                 | 37.05         | 47.48  | 56.96      |
| S.Em.±                                                                                                      | 0.94          | 1.82   | 1.18       |
| C.D. (P=0.05)                                                                                               | 2.73          | 5.32   | 3.44       |

Note: RD P<sub>2</sub>O<sub>5</sub> and RD K<sub>2</sub>O common for all the treatments except T<sub>1</sub> and Foliar application of nano N and nano Zn at @ 25 and 50 DAS.

(50.75) as compared to other treatments. However, it was on par with 75 per cent RDN + foliar application of chemically synthesized nano N @ 4 ml/l and green synthesized nano Zn @ 2 ml/l at 25 and 50 DAS (48.36) and 100 per cent NPK + 25 kg ha<sup>-1</sup> ZnSO<sub>4</sub> (46.28). Significantly lower SPAD readings were recorded in absolute control (31.12).

There was significant difference in chlorophyll content of sweet corn at 60 DAS with 75 per cent RDN + foliar application of chemically synthesized nano N @ 4 ml/l and chemically synthesized nano Zn @ 2 ml/l at 25 and 50 DAS (61.74) over rest of treatments. This treatment was on par with 75 per cent RDN + foliar application of chemically synthesized nano N @ 4 ml/l and green synthesized nano Zn @ 2 ml/l at 25 and 50 DAS (60.27) and 100 per cent NPK + 25 kg ha<sup>-1</sup> ZnSO<sub>4</sub> (58.77). Significantly lower SPAD readings were recorded in absolute control (38.23).

The measurement with SPAD is an indicative of greenness of the plant, which indicates the chlorophyll content of plant. Highest SPAD value was recorded in 75 per cent RDN + foliar application of chemically synthesized nano N @ 4 ml/l and chemically synthesized nano Zn @ 2 ml/l at 25 and 50 DAS might be due to promotion of the absorption and utilization of nutrients such as nitrogen by nano-fertilizers compound as concluded by Farnia and omidi, (2015).

The economic yield of a plant is an outcome of a series of integrated interactions of various biological events involving biochemical, physiological and morphological changes which take place during its development in accordance with supply of light, water, temperature and nutrients. Significant differences were observed in yield and yield components *viz.*, cob length (cm), cob girth (cm), number of kernels per cob, cob weight (g cob<sup>-1</sup>), fresh cob yield (q ha<sup>-1</sup>), green fodder yield (q ha<sup>-1</sup>) and Harvest index due to foliar application of nano nitrogen and nano zinc particles with different levels of recommended dose of nitrogen. Fresh cob yield of sweet corn was significantly

influenced by foliar application of nano nitrogen and nano zinc particles with different levels of recommended dose of nitrogen represented in Table 3.

Among all treatments, 75 per cent RDN + foliar application of chemically synthesized nano N @ 4 ml/l and chemically synthesized nano Zn @ 2 ml/l at 25 and 50 DAS (158.1 q ha<sup>-1</sup>) recorded highest fresh cob yield of sweet corn over the rest of the treatments. This was found on par with 75 per cent RDN + foliar application of chemically synthesized nano N @ 4 ml/l and green synthesized nano Zn @ 2 ml/l (155.1 q ha<sup>-1</sup>) and 100 per cent NPK + 25 kg ha<sup>-1</sup> ZnSO<sub>4</sub> (152.5 q ha<sup>-1</sup>). Significantly lower cob yield was recorded in absolute control (78.34 q ha<sup>-1</sup>) as compared all to other treatments.

In the present study 75 per cent RDN, 100% P & K + foliar application of chemically synthesized nano N @ 4 ml/l and chemically synthesized nano Zn @ 2 ml/l at 25 and 50 DAS recorded higher cob length, cob girth, maximum number of kernels per cob, cob weight and cob yield this is mainly due to small size and large effective surface area of nano particles could easily penetrated into the plant lead to better uptake of nitrogen and zinc. Nitrogen is an essential element of all the amino acids in plant structures which are the building blocks of plant proteins, important in the growth and development of vital plant tissues and cells like the cell membranes and chlorophyll. Thus, plants with sufficient nitrogen will experience high rates of photosynthesis and typically exhibit vigorous plant growth and development. Zinc plays as an activator of enzymes in plants and is directly involved in the biosynthesis of auxin, which produces more cells and dry matter that in turn will be stored in seeds as sink. Thus, there was increase in kernel yield is more expected (Devlin and Withan; 1983 and Parmar snehalbhai, 2016).

Green fodder yield of sweet corn was significantly influenced by foliar application of nano nitrogen and nano zinc particles with different levels of recommended dose of nitrogen

represented in Table 3. Among all treatments, 75 per cent RDN + foliar application of chemically synthesized nano N @ 4 ml/l and chemically synthesized nano Zn @ 2 ml/l at 25 and 50 DAS (214.8 q  $ha^{-1}$ ) recorded higher significant green fodder yield of sweet corn as compared to other treatments. However, it was found on par with 75 per cent RDN + foliar application of chemically synthesized nano N @ 4 ml/l and green synthesized nano Zn @ 2 ml/l at 25 and 50 DAS (211.2 q  $ha^{-1}$ ) and significantly lower green fodder yield was produced in absolute control (134.1 q  $ha^{-1}$ ) as compared all to other treatments. Higher green fodder yield obtained in 75 per cent RDN + foliar application of chemically synthesized nano N @ 4 ml/l and chemically synthesized nano Zn @ 2 ml/l at 25 and 50 DAS was attributed to significant increase in dry matter production in leaves and stem at various growth stages. Progressive significant increase in dry matter production was mainly attributed to increase in growth factors like plant height. This is in conformity with the results of Devid (1962) and Bommegowda (1986). This increase in height was due to extended intermodal length. Such increase could be ascribed to higher precursor activity of nano scale Zn in auxin production (Kobayashi and Mizutani, 1970).

Higher dry matter production was due to more number of leaves plant $^{-1}$  and leaf area at harvest 75 per cent RDN + foliar application of chemically synthesized nano N @ 4 ml/l and chemically synthesized nano Zn @ 2 ml/l at 25 and 50 DAS which provided more photosynthates for the grain (sink) and more of accumulated dry matter retained in the stem at harvest, which resulted in higher stover production. These findings are in accordance with work of Catanescu (1977) and Krishnaveni and Ramaswamy (1985). Harvest index (%) of sweet corn was significantly influenced due to foliar application of nano nitrogen and nano zinc particles with different levels of recommended dose of nitrogen presented in Table 3.

Among all treatments, 75 per cent RDN + foliar application of chemically synthesized nano N @ 4 ml/l and green synthesized nano Zn @ 2 ml/l at 25 and 50 DAS (42.09) recorded

highest harvest index of sweet corn as compared to rest of the treatments. However, it was found on par with 75 per cent RDN + foliar application of chemically synthesized nano N @ 4 ml/l and chemically synthesized nano Zn @ 2 ml/l at 25 and 50 DAS (41.88), 100 per cent NPK + 25 kg  $ha^{-1}$  ZnSO<sub>4</sub> (41.61), 100 per cent NPK (40.92), 50 per cent RDN + foliar application of chemically synthesized nano N @ 4 ml/l at 25 and 50 DAS (40.67) and 50 per cent RDN + foliar application of chemically synthesized nano N @ 4 ml/l at 25 and 50 DAS and chemically synthesized nano Zn @ 2 ml/l at 25 and 50 DAS (40.60). Significantly lower harvest index was recorded in absolute control (36.98) as compared all to other treatments.

Lowest cost of cultivation was noticed in absolute control (₹ 38,188  $ha^{-1}$ ) as compared to all other treatments. The highest cost of cultivation was recorded in 100 per cent RDF + 25 kg ZnSO<sub>4</sub>  $ha^{-1}$  (₹ 49,994  $ha^{-1}$ ), 75 per cent RDN + foliar application of chemically synthesized nano N @ 4 ml/l and green synthesized nano zinc 2ml/l at 25 and 50 DAS (₹ 48,569  $ha^{-1}$ ) followed by 75 per cent RDN + foliar application of chemically synthesized nano N @ 4 ml/l and chemically synthesized nano zinc 2ml/l at 25 and 50 DAS (₹ 48,575  $ha^{-1}$ ). (Table 4). Gross returns were significantly higher with 75 per cent RDN + foliar application of chemically synthesized nano N @ 4 ml/l and chemically synthesized nano zinc 2ml/l at 25 and 50 DAS (₹ 1,26,503  $ha^{-1}$ ) as compared all other treatments. However, it was on par with 75 per cent RDN + foliar application of chemically synthesized nano N @ 4 ml/l and green synthesized nano zinc 2ml/l at 25 and 50 DAS (₹ 1,24,080  $ha^{-1}$ ) and 100 per cent RDF + 25 kg ZnSO<sub>4</sub>  $ha^{-1}$  (₹ 1,21,984  $ha^{-1}$ ). Net returns were significantly higher with application of 75 per cent RDN + foliar application of chemically synthesized nano N @ 4 ml/l and chemically synthesized nano zinc 2ml/l at 25 and 50 DAS (₹ 77,928  $ha^{-1}$ ) compared all other treatments and it was on par with 75 per cent RDN + foliar application of chemically synthesized nano N @ 4 ml/l and green synthesized nano zinc 2ml/l at 25 and 50 DAS (₹ 75,511  $ha^{-1}$ ) and 100 per cent NPK + 25 kg  $ha^{-1}$  ZnSO<sub>4</sub> (₹ 71,990  $ha^{-1}$ ). Significantly highest

Table 3. Fresh cob yield, green fodder yield and harvest index as influenced by foliar application of nano nitrogen and nano zinc

| Treatments                                                                                                  | Fresh cob yield(q $ha^{-1}$ ) | Green fodder yield (q $ha^{-1}$ ) | Harvest index |
|-------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------------------|---------------|
| T <sub>1</sub> : Absolute control                                                                           | 78.3                          | 134.1                             | 36.98         |
| T <sub>2</sub> : 100% NPK (150 kg N, 75 kg P <sub>2</sub> O <sub>5</sub> , and 37.5 kg K <sub>2</sub> O/ha) | 131.4                         | 189.7                             | 40.92         |
| T <sub>3</sub> : 100% NPK + 25 kg/ha ZnSO <sub>4</sub>                                                      | 152.5                         | 207.9                             | 41.61         |
| T <sub>4</sub> : 75% N + foliar application of chemically synthesized nano N @ 4 ml/l                       | 133.0                         | 200.0                             | 39.69         |
| T <sub>5</sub> : 50% N + foliar application of chemically synthesized nano N @ 4 ml/l                       | 126.4                         | 184.4                             | 40.67         |
| T <sub>6</sub> : 25% N + foliar application of chemically synthesized nano N @ 4 ml/l                       | 113.2                         | 168.3                             | 40.12         |
| T <sub>7</sub> : Foliar application of chemically synthesized nano N @ 4 ml/l                               | 85.12                         | 132.4                             | 39.14         |
| T <sub>8</sub> : T <sub>4</sub> + foliar application of chemically synthesized nano Zn @ 2 ml/l             | 158.1                         | 214.8                             | 41.88         |
| T <sub>9</sub> : T <sub>5</sub> + foliar application of chemically synthesized nano Zn @ 2 ml/l             | 133.5                         | 208.6                             | 39.03         |
| T <sub>10</sub> : T <sub>6</sub> + foliar application of chemically synthesized nano Zn @ 2 ml/l            | 118.6                         | 178.1                             | 39.97         |
| T <sub>11</sub> : T <sub>7</sub> + foliar application of chemically synthesized nano Zn @ 2 ml/l            | 97.92                         | 147.3                             | 39.94         |
| T <sub>12</sub> : T <sub>4</sub> + foliar application of green synthesized nano Zn @ 2 ml/l                 | 155.1                         | 211.2                             | 42.09         |
| T <sub>13</sub> : T <sub>5</sub> + foliar application of green synthesized nano Zn @ 2 ml/l                 | 129.9                         | 189.9                             | 40.60         |
| S.Em.±                                                                                                      | 2.9                           | 4.3                               | 0.67          |
| C.D. (P=0.05)                                                                                               | 8.5                           | 12.9                              | 1.95          |

Note: RD P<sub>2</sub>O<sub>5</sub> and RD K<sub>2</sub>O common for all the treatments except T<sub>1</sub> and Foliar application of nano N and nano Zn at @ 25 and 50 DAS

*Growth, yield and economics of sweet corn .....*

Table 4. Economies of sweet corn as influenced by foliar application of nano nitrogen and nano zinc

| Treatments                                                                                                  | Cost of cultivation (₹ ha <sup>-1</sup> ) | Gross returns (₹ ha <sup>-1</sup> ) | Net returns (₹ ha <sup>-1</sup> ) | B:C  |
|-------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------|-----------------------------------|------|
| T <sub>1</sub> : Absolute control                                                                           | 38188                                     | 62671                               | 24483                             | 1.64 |
| T <sub>2</sub> : 100% NPK (150 kg N, 75 kg P <sub>2</sub> O <sub>5</sub> , and 37.5 kg K <sub>2</sub> O/ha) | 48165                                     | 105112                              | 56947                             | 2.18 |
| T <sub>3</sub> : 100% NPK + 25 kg/ha ZnSO <sub>4</sub>                                                      | 49994                                     | 121984                              | 71990                             | 2.44 |
| T <sub>4</sub> : 75% N + foliar application of chemically synthesized nano N @ 4 ml/l                       | 48269                                     | 106400                              | 58131                             | 2.20 |
| T <sub>5</sub> : 50% N + foliar application of chemically synthesized nano N @ 4 ml/l                       | 47760                                     | 101134                              | 53374                             | 2.12 |
| T <sub>6</sub> : 25% N + foliar application of chemically synthesized nano N @ 4 ml/l                       | 47251                                     | 90545                               | 43294                             | 1.92 |
| T <sub>7</sub> : Foliar application of chemically synthesized nano N @ 4 ml/l                               | 46741                                     | 68092                               | 21351                             | 1.46 |
| T <sub>8</sub> : T <sub>4</sub> + foliar application of chemically synthesized nano Zn @ 2 ml/l             | 48575                                     | 126503                              | 77928                             | 2.60 |
| T <sub>9</sub> : T <sub>5</sub> + foliar application of chemically synthesized nano Zn @ 2 ml/l             | 48066                                     | 106827                              | 58761                             | 2.22 |
| T <sub>10</sub> : T <sub>6</sub> + foliar application of chemically synthesized nano Zn @ 2 ml/l            | 47557                                     | 94859                               | 47302                             | 1.99 |
| T <sub>11</sub> : T <sub>7</sub> + foliar application of chemically synthesized nano Zn @ 2 ml/l            | 47047                                     | 78334                               | 31287                             | 1.67 |
| T <sub>12</sub> : T <sub>4</sub> + foliar application of green synthesized nano Zn @ 2 ml/l                 | 48569                                     | 124080                              | 75511                             | 2.55 |
| T <sub>13</sub> : T <sub>5</sub> + foliar application of green synthesized nano Zn @ 2 ml/l                 | 48060                                     | 103952                              | 55892                             | 2.16 |
| S.Em. ±                                                                                                     | -                                         | 2321                                | 2321                              | 0.05 |
| C.D. (P=0.05)                                                                                               | -                                         | 6776                                | 6776                              | 0.14 |

Note: RD P<sub>2</sub>O<sub>5</sub> and RD K<sub>2</sub>O common for all the treatments except T<sub>1</sub> and Foliar application of nano N and nano Zn at @ 25 and 50 DAS

B:C ratio (2.60) was recorded with application of 75 per cent RDN + foliar application of chemically synthesized nano N @ 4 ml/l and chemically synthesized nano zinc 2ml/l as compared to all other treatments. However, it was on par with 75 per cent RDN + foliar application of chemically synthesized nano N @ 4 ml/l and green synthesized nano zinc 2 ml/l at 25 and 50 DAS (2.55) and 75 per cent RDN + foliar application of chemically synthesized nano N @ 4 ml/l (2.44). Higher profit per rupee invested was recorded in the results showed that 75 per cent RDN + foliar application of chemically synthesized nano N @ 4 ml/l and chemically synthesized nano zinc 2ml/l at 25 and 50 DAS (2.60), was due to adequate fresh cob yield. Lower BC ratio was observed in only foliar application of chemically synthesized nano N @ 4 ml/l at 25 and 50 DAS (1.45) and

followed by absolute control (1.64), because of higher cost of cultivation leads to lower B:C ratio. This work was confirmatory with the work of Bheerasha, (2018) and Uma, (2019).

### Conclusion

It was concluded that application of 75% RDN (112.5 kg N), 100% P & K along with foliar application of chemically synthesized nano N @ 4 ml/l and chemically synthesized Zn @ 2 ml/l at 25 and 50 DAS, respectively was found optimum for higher fresh cob yield of sweet corn followed by the application of 75% RDN(112.5 kg N), 100% P & K along with foliar application of chemically synthesized nano N @ 4 ml/l and green synthesized Zn @ 2 ml/l at 25 and 50 DAS, respectively.

### References

Amrita R, Reena S L, Mohammad J and Kapil L, 2015, Antibacterial activity of Zinc oxide nanoparticles prepared from *Brassica oleracea* leaves extracts. *International Journal of Advanced Research*, 3(11): 322-328.

Bheerasha K J, 2018, Studies on the effect of nano potassium on growth and yield of maize (*Zea Mays L.*). *M.Sc. Thesis*. University of Agricultural Sciences, Bengaluru, Karnataka, India.

Catanesu V, 1977, The influence of certain fertilizers upon certain physiological process in maize cultivated in sandy loam soils. *Analele Institutuati De Cercetaripentru Cereale Si Plante Techniee, Fundulea*, 42: 437-446.

Devlin R M And Withan F H, 1983, *Plant Physiology*. Wadsworth Publishing Company: California. 42(5): 394-401.

Farnia A and Omidi M M, 2015, effect of nano-zinc chelate and nano-biofertilizer on yield and yield components of maize (*Zea mays L.*), under water stress condition. *Indian Journal Natural Sciences*, 5(29): 4614-4624.

Kobayashi Y and Mizutani S, 1970, Studies on the wilting treatment of corn plant: the influence of the artificial auxin control in nodes on the behaviour of rooting. *Proceedings of Crop Science and Society of Japan*, 39: 213-220.

Krishnaveni K and Ramaswamy K R, 1985, Influence of N, P and K on the yield and yield attributes of CH-1 hybrid. *Madras Agricultural Journal*, 72(7): 382-387.

Nithya B N, Ramakrishna Naika, Naveen D V and Sunil Kumar T, 2018, Influence of Nano Zinc Application on Growth and Yield Parameters of Mulberry. *International Journal of Pure & Applied Bioscience*, 6(2): 317-319.

Parmar Snehalbhai J, 2016, Effect of ZnO nanoparticles on germination, growth and yield of groundnut (*Arachis hypogea L.*). *Ph.D. (Agri.) Thesis*, Anand agricultural University, Anand (India).

Uma V, 2019, Influence of nano - zinc oxide (zno) particles on growth and yield of maize (*Zea mays L.*). *M.Sc. Thesis*. University of Agricultural Sciences, Bengaluru, Karnataka, India.