

Response of mothbean (*Vigna aconitifolia*) to different levels of fertilizers and organic manures in shallow black soils of northern dry zone of Karnataka

RUHEENTAJ, G. Y. VIDYAVATHI, I. M. SARAWAD AND V. S. SURAKOD

Department of Soil Science and Agricultural Chemistry
College of Agriculture, Vijayapur
University of Agricultural Sciences, Dharwad - 580 005
Karnataka, India

E-mails: ruhitaj77@gmail.com, vidyavathisac@gmail.com

(Received: November, 2021 ; Accepted: December, 2021)

Abstract: A field experiment was conducted to assess the response of mothbean (*Vigna aconitifolia*) to different levels of fertilizers and organic manures in shallow black soils of northern dry zone- of of Karnataka at RARS, Vijayapur, University of Agricultural Sciences, Dharwad during *kharif* 2018. The experiment was laid out in split plot design replicated thrice with four main plots consisted of organic manures *viz.*, M₁- No organics (Control); M₂- Vermicompost 0.5 t ha⁻¹; M₃- Vermicompost 1.0 t ha⁻¹ and M₄- FYM 2.5 t ha⁻¹ and five sub plots consisted of different levels of fertilizers. Combined application of vermicompost @ 1.0 t ha⁻¹ and supply of fertilizer @ 12.5:25:0 N: P₂O₅: K₂O kg ha⁻¹ (M₃S₄) recorded highest plant height, dry matter accumulation, pod numbers per plant, test weight, grain yield and straw yield. Further, highest gross returns was recorded with same said treatment (M₃S₄) but maximum net returns and B:C was recorded with combined application of FYM 2.5 t ha⁻¹ + 12.5:25:0 N: P₂O₅: K₂O kg ha⁻¹ (M₄S₅) which was on par with vermicompost @ 1.0 t ha⁻¹ + fertilizer @ 12.5:25:0 N: P₂O₅: K₂O kg ha⁻¹ (M₃S₄)

Key words: Black soil, Fertilizer, Returns, Vermicompost

Mothbean [*Vigna aconitifolia* (Jacq.) Marechal] is an important pulse crop of the desert region and is remarkably well suited to arid and semi-arid areas of India and some other countries of Asia. In India, it is grown on an area of 13.19 lakh ha, mostly confined to Rajasthan, Gujarat, Maharashtra, Karnataka, Uttar Pradesh and Haryana with a production of 1,753 lakh t and productivity of 133 kg ha⁻¹ (Sadashivanagowda *et al.* 2017). It can very well stand drought conditions and is probably the most drought resistant crop among the grain legumes. The crop has spreading growth habit forming a mat like covering on the soil surface. It thus helps greatly in the conservation of soil, water and serves as a very efficient and suitable cover crop for checking soil erosion. The lower productivity of this crop is attributed to several factors *viz.*, growing the crop under moisture stress, marginal lands with very low inputs, without proper nutrient management and other agronomical practices, without pest and disease management, non-availability of high yielding varieties and late sowing. This clearly shows that it is necessary to overcome these constraints to get higher yields. Yield is a complex character resulting from the interplay of nutrient management with the environmental variables and other factors.

With the increasing demand of pulses, there is an urgent need to increase their productivity, so combined use of fertilizers and organic manure not only give the great promise in crop production but also control the emergence of multiple nutrient deficiencies and maintain good soil health. Keeping this in view, an effort was made to investigate the Influence of different levels of fertilizers and manures on soil fertility, growth and yield of moth bean in shallow black soils of Northern Dry Zone of Karnataka with objectives to know the influence of different levels of fertilizers and organic manures on growth, yield and economics of mothbean,

The field experiment was conducted at Regional Agricultural Research Station, Vijayapur in Northern dry zone of Karnataka (at latitude 160 491 N, longitude 750 431 E and altitude of 593 m above MSL) during *kharif* 2018. The experiment was laid out in split plot design replicated thrice with four main plots consisted of organic manures *viz.*, M₁- No organics (Control); M₂- Vermicompost 0.5 t ha⁻¹; M₃- Vermicompost 1.0 t ha⁻¹ and M₄- FYM 2.5 t ha⁻¹ and five sub plots consisted of different levels of fertilizers *viz.*, S₁- No inorganics (Control); S₂-7.5:15:0 N: P₂O₅: K₂O kg ha⁻¹; S₃-10:20:0 N: P₂O₅: K₂O kg ha⁻¹; S₄-12.5:25:0 N: P₂O₅: K₂O kg ha⁻¹; S₅-15:30:0 N: P₂O₅: K₂O kg ha⁻¹. The seed rate of 12 kg ha⁻¹ was used for sowing. Organic manures and fertilizers were applied as per treatments at the time of sowing. The biometric observations were recorded at regular time intervals during crop period and data were subjected to standard statistical analysis. The soil of the experimental site was shallow black clay loam having pH of 8.34 recorded by using potentiometric method, low in available nitrogen (175.00 kg ha⁻¹), medium in available phosphorous (33.0 kg ha⁻¹) and high in potassium (335.0 kg ha⁻¹).

The growth parameters like plant height (39.2 and 45.0 cm, respectively at 60 DAS and at harvest) and dry matter accumulation (9.48 and 20.43, respectively at 60 DAS and at harvest) were significantly higher in the treatment receiving vermicompost @ 1.0 t ha⁻¹ + fertilizer @ 12.5:25:0 N: P₂O₅: K₂O kg ha⁻¹ (M₃S₄). Similarly number of pods per plant (61.47), pod length of 8.67 cm and 100 seed weight of 1.96 gram was recorded in M₃S₄ (Table 1).

The grain yield (625.00 kg ha⁻¹) and straw yield (2340.00 kg ha⁻¹) was substantially higher in combination of vermicompost @ 1.0 t ha⁻¹ + supply of fertilizer @ 12.5:25:0 N: P₂O₅: K₂O kg ha⁻¹ than other combinations (Table 2). This increment might be attributed due to favourable influence of combined application of manures and fertilizers on sink component resulted to improved development of the plants in relations of yield attributes (pod length, pod numbers per plant and test weight) and growth attributes (plant height and DMA) on account of balanced nutrition and synergistic influence of combined incorporation as contrast to control. Present findings were in accordance with the study conducted by Raghwendra and Kedar (2008) in chickpea, Vadgave (2010) in green gram and Sadashivanagowda *et al.* (2017 a) in mothbean.

Table 1. Influence of different levels of fertilizers and organic manures on growth and yield attributes of mothbean

Treatments	Plant height (cm)		Dry matter accumulation (DMA) (g plant ⁻¹)		Pod numbers plant ⁻¹	Pod length (cm)	Test weight (100 Seeds)
	60 DAS	At harvest	60 DAS	At harvest			
<u>Organics</u>							
M ₁	21.07	28.67	4.62	13.44	31.33	4.73	1.59
M ₂	32.21	39.10	6.39	16.06	47.41	6.14	1.62
M ₃	35.85	43.10	8.36	18.86	54.60	8.01	1.82
M ₄	34.02	41.60	8.05	18.39	54.85	7.80	1.74
S.Em.±	0.41	0.54	0.14	0.28	0.67	0.09	0.02
C.D 5%	1.41	1.87	0.48	0.96	2.31	0.32	0.08
<u>Fertilizer levels (S)</u>							
S ₁	27.46	34.42	6.04	15.65	42.97	5.80	1.62
S ₂	29.88	37.46	6.72	16.18	45.38	6.36	1.68
S ₃	31.48	38.79	6.88	16.85	46.84	6.84	1.68
S ₄	33.09	40.21	7.33	17.56	50.31	7.25	1.76
S ₅	32.04	39.71	7.31	17.19	49.75	7.09	1.73
S.Em.±	0.51	0.43	0.11	0.22	0.67	0.07	0.02
C.D 5%	1.46	1.25	0.32	0.64	1.94	0.19	0.05
<u>Interaction (M×S)</u>							
M ₁ S ₁	16.00	22.00	3.70	13.18	27.60	4.04	1.57
M ₁ S ₂	20.73	29.50	4.55	13.24	29.80	4.27	1.69
M ₁ S ₃	22.10	29.83	4.43	13.37	31.40	4.97	1.50
M ₁ S ₄	23.00	31.33	4.83	13.62	31.80	5.17	1.56
M ₁ S ₅	23.53	30.67	5.58	13.80	36.07	5.21	1.60
M ₂ S ₁	28.20	37.00	5.43	13.80	43.00	5.23	1.64
M ₂ S ₂	31.50	38.83	6.26	15.20	45.80	6.15	1.65
M ₂ S ₃	32.77	39.17	6.63	16.78	47.73	6.15	1.59
M ₂ S ₄	33.63	40.50	6.63	17.21	48.47	6.53	1.65
M ₂ S ₅	34.93	40.00	7.01	17.30	52.07	6.64	1.55
M ₃ S ₁	34.53	40.50	7.72	17.83	50.27	7.03	1.68
M ₃ S ₂	35.67	41.83	8.06	18.17	52.80	7.53	1.73
M ₃ S ₃	35.74	43.50	8.24	18.74	54.00	8.37	1.85
M ₃ S ₄	39.23	45.00	9.48	20.43	61.47	8.67	1.96
M ₃ S ₅	34.07	44.67	8.30	19.10	54.47	8.47	1.90
M ₄ S ₁	31.10	38.17	7.30	17.80	51.00	6.92	1.58
M ₄ S ₂	31.60	39.67	8.02	18.09	53.13	7.49	1.64
M ₄ S ₃	35.30	42.67	8.21	18.50	54.23	7.89	1.77
M ₄ S ₄	36.50	44.00	8.37	18.99	59.50	8.63	1.87
M ₄ S ₅	35.61	43.50	8.36	18.57	56.40	8.07	1.86
S.Em.±	1.00	0.95	0.24	0.48	1.38	0.15	0.04
C.D 5%	2.96	2.91	0.75	1.49	4.15	0.47	0.12

DAS: Days after sowing

M: Organic manures

M₁: No organics (Control)M₂: Vermicompost 0.5 t ha⁻¹M₃: Vermicompost 1.0 t ha⁻¹M₄: Farm yard manure 2.5 t ha⁻¹

S: Fertilizer levels

S₁: No inorganics (Control)S₂: 7.5:15:0 N: P₂O₅: K₂O kg ha⁻¹S₃: 10:20:0 N: P₂O₅: K₂O kg ha⁻¹S₄: 12.5:25:0 N: P₂O₅: K₂O kg ha⁻¹S₅: 15:30:0 N: P₂O₅: K₂O kg ha⁻¹

Significantly higher gross returns were noticed with combined application vermicompost @ 1.0 t ha⁻¹ + fertilizer @ 12.5:25:0 N: P₂O₅: K₂O kg ha⁻¹ (M₃S₄) and being comparable with FYM @ 2.5 t per ha + 12.5 :25:0 N: P₂O₅: K₂O kg ha⁻¹ (M₄S₄) as contrast to control (Table 2). However maximum net returns and benefit cost ratio was noticed with FYM @ 2.5 t per ha + 12.5:25:0 N: P₂O₅: K₂O kg ha⁻¹ (M₄S₄) followed by VC @ 1.0 t ha⁻¹ + 12.5:25:0 N: P₂O₅: K₂O kg ha⁻¹ (M₃S₄) as contrast to control. This was because of higher cost incurred for vermicompost than FYM. These outcomes are in concordant with the reports

of Subbarayappa *et al.* (2009) in green gram and Sutaria *et al.* (2010) in cowpea.

With the above results it was concluded that combined application of vermicompost @ 1.0 t ha⁻¹ + fertilizer @ 12.5:25:0 N: P₂O₅: K₂O kg ha⁻¹ or FYM @ 2.5 t ha⁻¹ + fertilizer @ 12.5:25:0 N: P₂O₅: K₂O kg ha⁻¹ found to be optimum for mothbean to realise higher grain yield and net returns in shallow black soils of northern dry zone of Karnataka.

Response of mothbean (*Vigna aconitifolia*) to.....

Table 2. Influence of different levels of fertilizers and organic manures on yield and economics of mothbean

Treatments	Grain yield (kg ha ⁻¹)	Straw yield (kg ha ⁻¹)	Gross returns (Rs ha ⁻¹)	Net returns (Rs ha ⁻¹)	B:C
<u>Organics</u>					
M ₁	391	1468	21752	7755	1.55
M ₂	463	1718	25708	9320	1.57
M ₃	572	2124	31824	13237	1.71
M ₄	570	2081	31628	14941	1.89
S.Em.±	16.95	59.39	935.64	935.64	0.05
C.D 5%	59	206	3237	3237	0.17
<u>Fertilizer levels (S)</u>					
S ₁	438	1632	24336	9111	1.58
S ₂	485	1800	26946	10657	1.65
S ₃	501	1829	27806	11236	1.67
S ₄	537	1982	29807	12953	1.76
S ₅	535	1996	29745	12610	1.73
S.Em.±	6.62	30.47	366.79	366.79	0.02
C.D 5%	19	88	1056	1056	0.06
<u>Interaction (M×S)</u>					
M ₁ S ₁	296	1143	16532	4297	1.35
M ₁ S ₂	413	1553	22997	8983	1.64
M ₁ S ₃	414	1543	23031	8737	1.61
M ₁ S ₄	416	1503	23055	8476	1.58
M ₁ S ₅	415	1597	23145	8285	1.56
M ₂ S ₁	431	1650	24042	8653	1.56
M ₂ S ₂	452	1690	25135	8921	1.55
M ₂ S ₃	460	1689	25533	9038	1.55
M ₂ S ₄	485	1767	26917	10138	1.60
M ₂ S ₅	484	1797	26912	9852	1.58
M ₃ S ₁	513	1867	28467	10877	1.62
M ₃ S ₂	538	2021	29915	11500	1.62
M ₃ S ₃	566	2103	31455	12760	1.68
M ₃ S ₄	625	2340	34760	15781	1.83
M ₃ S ₅	622	2293	34523	15263	1.79
M ₄ S ₁	510	1870	28305	12616	1.80
M ₄ S ₂	537	1937	29738	13224	1.80
M ₄ S ₃	565	1980	31203	14408	1.86
M ₄ S ₄	620	2320	34498	17418	2.02
M ₄ S ₅	619	2299	34398	17038	1.98
S.Em.±	20.68	80.61	1142.77	1142.77	0.06
C.D 5%	67	257	3736	3736	0.20
<u>M: Organic manures</u>					
M ₁ : No organics (Control)	M ₂ : Vermicompost 0.5 t ha ⁻¹		S: Fertilizer levels		
M ₃ : Vermicompost 1.0 t ha ⁻¹	M ₄ : Farm yard manure 2.5 t ha ⁻¹		S ₁ : No inorganics (Control)	S ₂ : 7.5:15:0 N: P ₂ O ₅ : K ₂ O kg ha ⁻¹	
			S ₃ : 10:20:0 N: P ₂ O ₅ : K ₂ O kg ha ⁻¹	S ₄ : 12.5:25:0 N: P ₂ O ₅ : K ₂ O kg ha ⁻¹	
			S ₅ : 15:30:0 N: P ₂ O ₅ : K ₂ O kg ha ⁻¹		

References

Raghawendra S and Kedar P, 2008, Effect of vermicompost, rhizobium and DAP on growth, yield and nutrient uptake by chickpea. *Journal Food Legumes*, 21 (2) 112- 114.

Sadashivanagowda S N O, Alagundagi S C, Nadagouda B T, Bagali A N and Poleshi C M, 2017, Productivity, Grain Protein and Economics of Moth bean Genotypes as Influenced by Spacing and Organics under Dry land Areas. *International Journal of Pure and Applied Bioscience*, 5 (1) : 537-542.

Sadashivanagowda S N O, Alagundagi S C, Nadagouda B T, Bagali A N and Nadagouda B T, 2017 a, Influence of spacing and organics on growth, yield and quality of arid legume moth bean [*Vigna aconitifolia* (Jacq.) Marechal]. *Research in Environment and Life Science*, 10 (6) 546-549.

Subbarayappa C T, Santhosh S C, Srinivasa N and Ramakrishnaparama V, 2009, Effect of integrated nutrient management on nutrient uptake and yield of cowpea in southern dry zone soils of Karnataka. *Mysore Journal of Agriculture Sciences*, 43 (4) : 700-704.

Sutaria G S, Kabari K N, Vora V D, Hirpara D S and Padmani D R, 2010, Response of legume crops to enriched compost and vermicompost on *Ustochrept* under rainfed Agriculture. *Legume Research*, 33 (2) : 128-130.

Vadgave S M, 2010, Studies on integrated nutrient management on seed yield, quality and storability in green gram [*Vigna radiata* (L.) Wilczek]. *M. Sc. (Agril.) Thesis*, University of Agricultural Sciences, Dharwad.