

Effect of nitrogen and phosphorus rates and time of application on growth, fodder yield and quality of hedge lucerne

DIVYA BHANDARI¹, S. RAJKUMARA¹, S. S. HALLIKERI¹, H. Y. PATIL², S. K. PRASHANTHI³

¹Department of Agronomy, ²Department of Crop Physiology, ³Department of Biotechnology
College of Agriculture, Dharwad University of Agricultural Sciences, Dharwad - 580 005, India

*E-mail: drjbhandari2000@gmail.com

(Received: September, 2025 ; Accepted: December, 2025)

DOI: 10.61475/JFS.2025.v38i4.13

Abstract: A field experiment was conducted at the MARS, Dharwad, Karnataka, during the *kharif* season of 2024-25 to study the effect of nitrogen and phosphorus rates and time of application on growth, yield and quality of hedge lucerne. The treatments comprised six nitrogen and phosphorus rates and three time of application. Application of 50 kg N and 60 kg P₂O₅ ha⁻¹ significantly enhanced growth parameters like plant height and leaf to stem ratio, total green fodder (26.37 t ha⁻¹), dry fodder yield (5.52 t ha⁻¹), mean crude protein (21.36%) and total ash content (8.13%), total crude protein (1211.41 kg ha⁻¹) and total ash yield (471.0 kg ha⁻¹) as superior to lower levels of nutrient application. Application of nutrients in four splits (25% basal + 25% after 1st cut + 25% after 2nd cut + 25% after 3rd cut) significantly recorded higher growth parameters, total green fodder (23.25 t ha⁻¹), dry fodder yield (4.84 t ha⁻¹), mean crude protein (20.08%) and total ash content (7.76%), total crude protein (1003.5 kg ha⁻¹) and total ash yield (390.4 kg ha⁻¹) as compared three and two splits. Higher green fodder yield and quality of hedge lucerne can be obtained with application of 50 kg N and 60 kg P₂O₅ ha⁻¹ in four splits was found optimum.

Key words: Crude protein content, Hedge lucerne, Nitrogen, Phosphorus, Time of application, Total ash content

Introduction

Desmanthus virgatus (L.), commonly known as hedge lucerne, is a perennial, multi-cut legume fodder crop from the *Fabaceae* family. Native to tropical and subtropical America, it adapts well to diverse agro-climatic conditions. It grows from a short herb to a woody shrub (up to 3 m), with deep roots, slender stems and bipinnate leaves. The plant produces white flowers and linear pods. It is highly palatable, non-toxic to ruminants and rich in crude protein (~15.2%). Its rapid regrowth allows for multiple cuttings, yielding up to 39.81 tonnes per acre over six harvests (Radhakrishnan *et al.*, 2007). Compared to alfalfa, hedge lucerne is more tolerant to drought, acidic and sodic soils and does not cause bloat due to the presence of condensed tannins (2-3% DM). It is also less affected by pests and diseases and thrives with minimal inputs under rainfall ranging from 250-2000 mm. It is grown as a sole crop, intercrop or in alley cropping systems. Fodder crops need a higher amount of nutrients to support healthy vegetative growth and maintain quality through out their growing period. Nitrogen supports above-ground growth and helps in faster regrowth after cutting, while phosphorus is essential for early root development and is especially important in legumes, which need more phosphorus than cereals (Kumar *et al.*, 2012). Proper management of nitrogen and phosphorus is essential for achieving higher yield and better quality in fodder crops. Also, the timing of nutrient application, especially nitrogen, plays a key role in improving its efficiency and crop uptake. Hedge lucerne is a highly palatable perennial fodder crop that grows well in various agro-climatic conditions. However, information on its nutrient management is less. However, the present study was carried out during *kharif* 2024 in the Northern Transition Zone of

Karnataka to evaluate the effect of different nitrogen and phosphorus rates and their time of application on the growth, fodder yield and quality of hedge lucerne.

Material and methods

The field experiment was carried out during *kharif* 2024 at Main Agricultural Research Station, University of Agricultural Sciences, Dharwad, Karnataka (15°29' N, 74°59' E, 678 m MSL), falling under Zone-8 (Northern Transition Zone). The total rainfall received during cropping period (July to December) was 660 mm well distributed with 42 rainy days. The site had clay soil, neutral pH (7.53), low organic carbon (0.46%) and available nitrogen (256.5 kg ha⁻¹), medium phosphorus (29.3 kg ha⁻¹) and high potassium (352.6 kg ha⁻¹). The experiment was laid out in split plot design with six nitrogen and phosphorus rates [M₁: 25 kg N + 40 kg P₂O₅ ha⁻¹, M₂: 25 kg N + 60 kg P₂O₅ ha⁻¹, M₃: 25 kg N + 80 kg P₂O₅ ha⁻¹, M₄: 50 kg N + 40 kg P₂O₅ ha⁻¹, M₅: 50 kg N + 60 kg P₂O₅ ha⁻¹, M₆: 50 kg N + 80 kg P₂O₅ ha⁻¹] as main plots, and three time of application [S₁: 50 % as basal + 50% at 1st cut, S₂: 50 % as basal + 25% at 1st cut + 25% at 2nd cut and S₃: 25 % as basal + 25% at 1st cut + 25% at 2nd cut + 25% at 3rd cut] as sub plots in three replication. The crop was sown at 45 cm row spacing with a seed rate of 15 kg ha⁻¹. The first cut was given at 75 days after sowing, leaving 30 cm stubbles, followed by nutrient application as per treatments. Subsequent cuts were taken at 30-day intervals (total 4 cuts). Growth parameters, fodder yield and quality were estimated. The data was analyzed using Fisher's method (ANOVA). Treatment means were compared using Duncan's Multiple Range Test (DMRT) at a 5% level of significance. Critical differences (CD) were calculated where the 'F' test was significant.

Results and discussion

Growth parameters

Increase in the application of nitrogen and phosphorus significantly increased the growth of hedge lucerne at all the stages. Significantly higher growth parameters were recorded at 30, 60, 75, 105, 135 and 165 DAS, such as plant height (12, 45.3, 102.9, 85.6, 77.8 and 65.6 cm, respectively) and leaf to stem ratio (0.93, 0.92, 0.88, 0.82 and 0.77, respectively) with application of 50 kg N and 60 kg P₂O₅ ha⁻¹ (Table 1 and 2). This was on par with 50 kg N and 80 kg P₂O₅ ha⁻¹. Time of application of nutrients also influenced growth of the hedge lucerne. Similarly, four splits (25% as basal + 25% at 1st cut + 25% at 2nd cut + 25% at 3rd cut) significantly recorded in higher plant height (11.4, 44.3, 98.3, 82.2, 73.3 and 61.1 cm, respectively) and leaf to stem ratio (0.89, 0.85, 0.75 and 0.70, respectively). This was on par with three splits. Interaction effect of 50 kg N and 60 kg P₂O₅ ha⁻¹ in four splits significantly resulted in higher plant height (13, 48.3, 107.4, 87.9, 86.5 and 68.6 cm, respectively) and leaf to stem ratio (0.97, 0.95, 0.90, 0.86 and 0.82, respectively) as compared other

treatments combinations, this may be due to synergistic effect of nitrogen and phosphorus with timely availability enhanced cellular activity through nutrient uptake. This in turn might have stimulated key physiological processes in the plant. The present findings are in line with those reported by Harikrishna (2005) in fodder maize, Malak (2005) in German grass and Islam (2007) in Napier grass.

Fodder yield

Similarly, application of 50 kg N and 60 kg P₂O₅ ha⁻¹ significantly resulted in higher total green fodder (26.37 t ha⁻¹) and dry fodder yield (5.52 tha⁻¹) as compared lower rates. Significantly higher total green fodder (23.25 t ha⁻¹) and dry fodder yield (4.84 t ha⁻¹) were superior under four splits over to three and two splits. Application of 50 kg N and 60 kg P₂O₅ ha⁻¹ in four splits significantly resulted in higher total green fodder (30.08 t ha⁻¹) and dry fodder yield (6.26 t ha⁻¹) as compared to other treatment combinations. This may be due to increased growth parameters. This were resulted in higher nutrient uptake

Table 1. Plant height of hedge lucerne as influenced by nitrogen and phosphorus levels and their time of application

Treatments	30DAS	60DAS	75DAS	105DAS	135DAS	165DAS
	(cm)	(cm)	(cm)	(cm)	(cm)	(cm)
Main plot- Nitrogen and phosphorus levels						
M ₁	9.3 ^b	37.3 ^b	84.0 ^b	72.9 ^b	63.9 ^c	54.4 ^c
M ₂	9.5 ^b	39.0 ^{ab}	90.1 ^{ab}	74.6 ^b	65.3 ^c	55.5 ^c
M ₃	9.7 ^b	41.8 ^{ab}	93.5 ^{ab}	77.8 ^{ab}	66.8 ^c	57.5 ^{bc}
M ₄	10.7 ^{ab}	42.3 ^{ab}	94.4 ^{ab}	80.5 ^{ab}	69.8 ^{bc}	58.7 ^{bc}
M ₅	12.0 ^a	45.3 ^a	102.9 ^a	85.6 ^a	77.8 ^a	65.6 ^a
M ₆	11.1 ^{ab}	44.5 ^{ab}	99.6 ^a	83.8 ^a	74.2 ^{ab}	62.1 ^{ab}
S.Em±	0.31	1.29	2.54	2.16	2.11	1.66
Sub plots-Time of application						
S ₁	9.5 ^b	39.6 ^b	89.9 ^a	76.6 ^b	66.9 ^b	56.8 ^b
S ₂	10.3 ^{ab}	41.2 ^b	94.5 ^{ab}	78.8 ^{ab}	68.8 ^{ab}	58.9 ^{ab}
S ₃	11.4 ^a	44.3 ^a	98.3 ^a	82.2 ^a	73.3 ^a	61.1 ^a
S.Em±	0.24	0.79	1.83	1.44	1.41	0.97
Interaction						
M ₁ S ₁	8.8 ^{fg}	32.8 ^f	74.3 ^d	70.8 ^e	62.2 ^f	52.8 ⁱ
M ₁ S ₂	8.9 ^{fg}	38.7 ^{c-f}	87.9 ^{cd}	72.2 ^{de}	63.6 ^f	54.2 ^{hi}
M ₁ S ₃	10.1 ^{b-g}	40.2 ^{b-c}	89.9 ^{bc}	75.6 ^{b-c}	66.0 ^{d-f}	56.1 ^{ei}
M ₂ S ₁	8.8 ^{fg}	38.2 ^{def}	88.7 ^{cd}	72.4 ^{de}	63.9 ^f	53.9 ^{hi}
M ₂ S ₂	9.3 ^{c-g}	36.1 ^{ef}	89.9 ^{bc}	74.7 ^{c-e}	65.1 ^{ef}	55.1 ^{ei}
M ₂ S ₃	10.4 ^{b-g}	42.8 ^{a-d}	92.1 ^{bc}	76.8 ^{b-e}	67.0 ^{d-f}	57.4 ^{c-h}
M ₃ S ₁	8.6 ^g	41.7 ^{b-c}	89.7 ^{b-d}	74.54 ^{c-e}	63.9 ^f	54.7 ^{g-i}
M ₃ S ₂	9.8 ^{d-g}	39.8 ^{b-c}	92.5 ^{a-c}	76.4 ^{b-c}	65.6 ^{d-f}	57.9 ^{c-g}
M ₃ S ₃	10.8 ^{b-f}	43.8 ^{a-d}	98.4 ^{abc}	82.4 ^{a-d}	70.9 ^{b-d}	59.8 ^{de}
M ₄ S ₁	9.7 ^{c-g}	39.1 ^{c-f}	89.9 ^{bc}	77.4 ^{b-c}	66.3 ^{d-f}	57.4 ^{e-h}
M ₄ S ₂	10.7 ^{b-f}	42.7 ^{a-d}	95.7 ^{a-c}	79.7 ^{a-c}	69.8 ^{c-e}	58.4 ^{ef}
M ₄ S ₃	11.8 ^{a-d}	45.1 ^{a-c}	97.7 ^{a-c}	84.6 ^{a-c}	73.5 ^{bc}	60.3 ^{dc}
M ₅ S ₁	11.1 ^{a-c}	42.7 ^{a-d}	98.7 ^{a-c}	83.3 ^{a-c}	72.6 ^{bc}	62.0 ^{cd}
M ₅ S ₂	12.0 ^{a-c}	44.9 ^{a-c}	102.7 ^{a-c}	85.5 ^{ab}	74.4 ^{bc}	66.1 ^{ab}
M ₅ S ₃	13.0 ^a	48.3 ^a	107.4 ^a	87.9 ^a	86.5 ^a	68.6 ^a
M ₆ S ₁	10.1 ^{c-g}	42.8 ^{a-d}	96.7 ^{a-c}	81.5 ^{a-d}	72.9 ^{bc}	60.1 ^{de}
M ₆ S ₂	11.1 ^{a-c}	44.9 ^{a-c}	98.0 ^{a-c}	84.1 ^{a-c}	74.1 ^{bc}	62.1 ^{cd}
M ₆ S ₃	12.1 ^{ab}	45.7 ^{ab}	104.20 ^{ab}	85.8 ^{ab}	75.6 ^b	64.0 ^{bc}
S.Em±	0.58	1.94	4.49	3.53	3.46	2.39

Note: DAS – Days after sowing, Means followed by the same lower case letter/s in a column do not differ significantly by DMRT (P=0.05)

Table 2. Leaf to stem ratio of hedge lucerne as influenced by nitrogen and phosphorus rates and time of application

Treatments	30DAS	60DAS	75DAS	105DAS	135DAS	165DAS
	DAS	DAS	DAS	DAS	DAS	DAS
Nitrogen and phosphorus levels						
M ₁	1.48 ^a	0.8 ^b	0.78 ^c	0.74 ^b	0.57 ^c	0.56 ^d
M ₂	1.67 ^a	0.83 ^{ab}	0.78 ^c	0.76 ^b	0.62 ^c	0.60 ^{cd}
M ₃	1.72 ^a	0.88 ^{ab}	0.84 ^{bc}	0.80 ^{ab}	0.67 ^{bc}	0.64 ^{cd}
M ₄	1.59 ^a	0.91 ^{ab}	0.87 ^{ab}	0.81 ^{ab}	0.75 ^{ab}	0.67 ^{bc}
M ₅	1.73 ^a	0.93 ^a	0.92 ^a	0.88 ^a	0.82 ^a	0.77 ^a
M ₆	1.74 ^a	0.93 ^a	0.88 ^{ab}	0.84 ^{ab}	0.76 ^{ab}	0.73 ^{ab}
S.Em±	0.19	0.02	0.02	0.03	0.02	0.02
Time of application						
S ₁	1.58 ^a	0.85 ^a	0.81 ^b	0.77 ^b	0.66 ^b	0.64 ^b
S ₂	1.56 ^a	0.88 ^a	0.83 ^b	0.8 ^{ab}	0.69 ^b	0.65 ^{ab}
S ₃	1.82 ^a	0.91 ^a	0.89 ^a	0.85 ^a	0.75 ^a	0.7 ^a
S.Em±	0.1	0.02	0.02	0.03	0.02	0.01
Interaction						
M ₁ S ₁	1.26 ^a	0.8 ^b	0.72 ^h	0.71 ^{ab}	0.54 ^f	0.51 ⁱ
M ₁ S ₂	1.31 ^a	0.79 ^b	0.74 ^{gh}	0.72 ^{ab}	0.58 ^f	0.56 ^{hi}
M ₁ S ₃	1.87 ^a	0.82 ^b	0.88 ^{b-d}	0.8 ^{ab}	0.6 ^f	0.61 ^{fg}
M ₂ S ₁	1.73 ^a	0.78 ^b	0.78 ^{f-h}	0.69 ^b	0.6 ^f	0.56 ^{hi}
M ₂ S ₂	1.6 ^a	0.81 ^b	0.76 ^{gh}	0.75 ^{ab}	0.56 ^f	0.59 ^{gh}
M ₂ S ₃	1.67 ^a	0.9 ^a	0.82 ^{d-f}	0.85 ^{ab}	0.71 ^{de}	0.66 ^{def}
M ₃ S ₁	1.38 ^a	0.8 ^b	0.79 ^{c-g}	0.79 ^{ab}	0.67 ^c	0.61 ^{fg}
M ₃ S ₂	1.8 ^a	0.92 ^a	0.84 ^{c-e}	0.81 ^{ab}	0.68 ^c	0.64 ^{cg}
M ₃ S ₃	1.97 ^a	0.91 ^a	0.89 ^{bc}	0.81 ^{ab}	0.67 ^c	0.68 ^{dc}
M ₄ S ₁	1.38 ^a	0.91 ^a	0.84 ^{c-e}	0.77 ^{ab}	0.71 ^{de}	0.72 ^{bc}
M ₄ S ₂	1.49 ^a	0.89 ^a	0.86 ^{b-d}	0.83 ^{ab}	0.75 ^{cd}	0.62 ^{fg}
M ₄ S ₃	1.91 ^a	0.95 ^a	0.92 ^{ab}	0.84 ^{ab}	0.79 ^{bc}	0.68 ^{cde}
M ₅ S ₁	1.98 ^a	0.91 ^a	0.87 ^{b-d}	0.86 ^{ab}	0.77 ^c	0.73 ^{bc}
M ₅ S ₂	1.5 ^a	0.95 ^a	0.91 ^b	0.87 ^{ab}	0.83 ^{ab}	0.77 ^{ab}
M ₅ S ₃	1.7 ^a	0.94 ^a	0.97 ^a	0.9 ^a	0.86 ^a	0.82 ^a
M ₆ S ₁	1.77 ^a	0.92 ^a	0.86 ^{b-d}	0.83 ^{ab}	0.69 ^c	0.7 ^{cd}
M ₆ S ₂	1.67 ^a	0.93 ^a	0.87 ^{b-d}	0.83 ^{ab}	0.75 ^{cd}	0.72 ^{bc}
M ₆ S ₃	1.8 ^a	0.93 ^a	0.89 ^{bc}	0.88 ^{ab}	0.85 ^a	0.76 ^b
S.Em±	0.24	0.04	0.06	0.1	0.04	0.03

Note: DAS – Days after sowing, Means followed by the same lower case letter/s in a column do not differ significantly by DMRT (P=0.05)

Effect of nitrogen and phosphorus rates

Table 3. Fodder yield and quality of hedge lucerne as influenced by nitrogen and phosphorus rates and time of application

Treatments	Total green fodder yield (t ha ⁻¹)	Total dry fodder yield (t ha ⁻¹)	Mean crude protein content (%)	Total crude protein yield kg ha ⁻¹	Mean total ash content (%)	Total ash yield (kg ha ⁻¹)
Nitrogen and phosphorus levels						
M ₁	15.74 ^c	3.23 ^c	17.93 ^c	591.31 ^d	6.53 ^c	213.9 ^d
M ₂	17.10 ^c	3.53 ^c	18.37 ^{bc}	650.32 ^{cd}	7.00 ^{bc}	249.1 ^d
M ₃	18.73 ^d	3.86 ^c	19.03 ^{bc}	752.94 ^c	7.16 ^{bc}	282.9 ^{cd}
M ₄	21.02 ^c	4.57 ^b	19.41 ^{bc}	912.53 ^b	7.5 ^{ab}	347.8 ^{bc}
M ₅	26.37 ^a	5.52 ^a	21.36 ^a	1211.41 ^a	8.13 ^a	471.0 ^a
M ₆	23.18 ^b	4.78 ^b	20.03 ^{ab}	989.86 ^b	7.73 ^{ab}	369.7 ^b
S.Em. \pm	0.31	0.11	0.52	22.08	0.18	14.9
Time of application						
S ₁	18.34 ^c	3.79 ^b	18.58 ^c	732.51 ^b	6.97 ^a	270.5 ^b
S ₂	19.87 ^b	4.11 ^b	19.40 ^b	818.14 ^b	7.3 ^a	306.2 ^b
S ₃	23.25 ^a	4.84 ^a	20.08 ^a	1003.54 ^a	7.76 ^a	390.4 ^a
S.Em. \pm	0.32	0.10	0.32	20.37	0.14	6.4
Interaction						
M ₁ S ₁	13.82 ^j	2.83 ^g	17.16 ^g	502.85 ^h	6.43 ^c	188.8 ⁱ
M ₁ S ₂	14.65 ^j	3.00 ^g	18.01 ^{fg}	549.36 ^{gh}	6.46 ^c	193.8 ⁱ
M ₁ S ₃	18.75 ^{gh}	3.86 ^{d-f}	18.63 ^{ceg}	721.71 ^f	6.7 ^c	259.0 ^{gh}
M ₂ S ₁	15.14 ^j	3.10 ^{fg}	17.77 ^{fg}	545.36 ^{gh}	6.85 ^{de}	209.9 ^{hi}
M ₂ S ₂	17.08 ⁱ	3.52 ^{eg}	18.11 ^{fg}	636.84 ^{fgh}	6.98 ^{ce}	255.3 ^{gh}
M ₂ S ₃	19.09 ^g	3.98 ^{dc}	19.22 ^{c-f}	768.74 ^{cf}	7.17 ^{ce}	282.3 ^{fg}
M ₃ S ₁	16.88 ⁱ	3.45 ^{eg}	18.57 ^{d-g}	667.97 ^{f-h}	6.91 ^{ce}	242.2 ^{gi}
M ₃ S ₂	17.61 ^{hi}	3.65 ^{eg}	19.27 ^{c-f}	701.58 ^{fg}	7.16 ^{ce}	260.7 ^{gh}
M ₃ S ₃	21.70 ^{ef}	4.48 ^{cd}	19.24 ^{c-f}	889.26 ^{de}	7.41 ^{bc}	346.0 ^{dc}
M ₄ S ₁	19.10 ^g	4.03 ^{dc}	18.43 ^{ceg}	765.09 ^{ef}	7.05 ^{ce}	286.7 ^{fg}
M ₄ S ₂	21.84 ^{ef}	4.56 ^{cd}	19.37 ^{c-f}	905.19 ^{de}	7.52 ^{bc}	335.7 ^{d-f}
M ₄ S ₃	24.40 ^{bc}	5.11 ^{bc}	20.43 ^{c-d}	1067.31 ^{bc}	7.92 ^{a-d}	420.9 ^{bc}
M ₅ S ₁	23.70 ^{cd}	4.93 ^{bc}	20.34 ^{b-c}	1032.28 ^{bd}	7.41 ^{bc}	381.1 ^{cd}
M ₅ S ₂	25.34 ^b	5.35 ^b	21.34 ^{ab}	1166.91 ^b	8.12 ^{a-c}	440.5 ^b
M ₅ S ₃	30.08 ^a	6.26 ^a	22.39 ^a	1435.05 ^a	8.87 ^a	591.5 ^a
M ₆ S ₁	21.37 ^f	4.42 ^{cd}	19.24 ^{c-f}	881.49 ^{de}	7.17 ^{ce}	314.6 ^{ef}
M ₆ S ₂	22.68 ^{de}	4.57 ^{cd}	20.27 ^{b-c}	948.95 ^{cd}	7.56 ^{b-e}	351.5 ^{de}
M ₆ S ₃	25.49 ^b	5.35 ^b	20.58 ^{bc}	1139.16 ^b	8.45 ^{ab}	442.9 ^b
S.Em. \pm	0.78	0.24	0.79	49.88	0.36	15.6

Note: DAS – Days after sowing, Means followed by the same lower case letter/s in a column do not differ significantly by DMRT (P=0.05)

by the crop and in turn increase in the fodder yield. These results were similar to the reports of Chaudhary *et al.* (2020) where the increased application of nitrogen and phosphorus to pearl millet resulted in higher growth and fodder yield. Conversely, green fodder yields (Fig 1 and 2) of hedge lucerne

were decreased from the first to the fourth cut, which could be attributed to reduction in per-day productivity from second cut onwards and a gradual decrease in dry matter production per plant at later harvest stages. Green fodder yield exhibited a strong correlation with dry matter production and the reduction

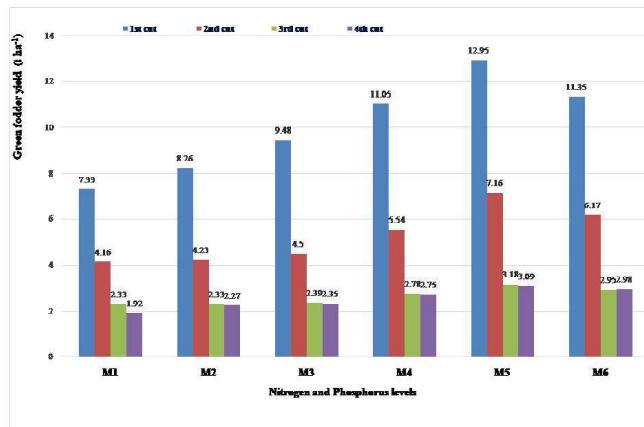


Fig 1. Green fodder yield of hedge lucerna at 75, 105, 135 and 165 DAS as influenced by nitrogen and phosphorus levels

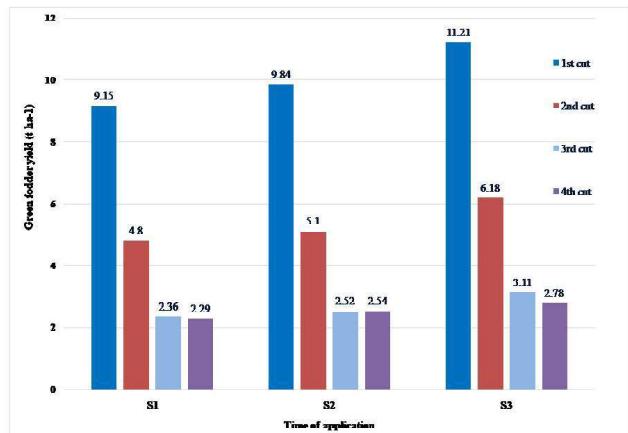


Fig 2. Green fodder yield of hedge lucerna at 75, 105, 135 and 165 DAS as influenced by application of nitrogen and phosphorus levels

in yields at successive cuts may also be linked to cooler weather conditions during those periods. A similar trend was observed in Hybrid Napier by Ishrath *et al.*, (2018). Green fodder yield of berseem was declined with successive cuts under varying fertilizer levels under Dharwad condition (Vidyashree *et al.*, 2023) and Mynavathi *et al.* (2021) in hedge lucerne.

Quality parameters

Application of 50 kg N and 60 kg P₂O₅ ha⁻¹ significantly obtained higher mean crude protein (21.36%) and total ash content (8.13%), total crude protein (1211.41 kg ha⁻¹) and total ash yield (471.0 kg ha⁻¹) as compared to lower levels. In case time of application, significantly higher mean crude protein (20.08%) and total ash content (7.76%), total crude protein (1003.5 kg ha⁻¹) and total ash yield (390.4 kg ha⁻¹) was obtained under the four splits as compared three and two splits. Combined effect of 50 kg N and 60 kg P₂O₅ ha⁻¹ in four splits significantly resulted in higher mean crude protein (22.39%)

and total ash content (8.87%), total crude protein (1435.1 kg ha⁻¹) and total ash yield (591.5 kg ha⁻¹) over other treatments. Higher quality parameters mainly depends on the nitrogen concentration in the plant which influenced the protein synthesis, as nitrogen is the chief component of amino acids and also higher crude protein and total ash yield as well as dry fodder yield resulted from the higher nutrients supplied at right time. Similar results were also observed by Wangchuk *et al.* (2015) in Hybrid Napier. These observations corroborate earlier reports by Sheta *et al.* (2010) in fodder oat and Muttappanavar and Shekara (2023) in hedge lucerne.

Conclusion

On the basis of data obtained from the present investigation, it can be concluded that application of 50 kg N and 60 kg P₂O₅ ha⁻¹ in four splits (25% as basal + 25% at 1st cut + 25% at 2nd cut + 25% at 3rd cut) was better for higher green fodder yield and quality of hedge lucerne.

References

Chaudhary J K, Patel A G, Gohil N B and Chaudhary D G, 2020, Response of nutrient content and quality of summer forage pearl millet (*Pennisetum glaucum* L.) on sowing date and nitrogen level. *International Journal Chemical Science*, 8(5): 841-844.

Harikrishna B L, Dasog G S and Patil P L, 2005, Effect of soil depths, N-doses and its split application on maize plant height, LAI and dry matter yield at different growth stages. *Karnataka Journal of Agricultural Sciences*, 18(2): 364-369.

Ishrath P K, Usha T C and Ganesh D, 2018, Effect of cutting intervals on yield and quality fodder production in Hybrid Napier. *Forage Research*, 44: 137-140.

Islam N, 2007, Effect of different doses of nitrogen and phosphorus fertilizer on yield, chemical composition and nutritive value of Napier grass (*Pennisetum purpureum*). *M.Sc. (Agri.) Thesis*, Bangladesh Agricultural University, Mymensingh, Bangladesh.

Kumar S, Dev I, Agrawal R K, Dixit A K and Ram S N, 2012, Agronomic research on forages in India: An overview. *Indian Journal of Agronomy*, 57(3): 92-104.

Malak M A, 2005, Effect of different levels of nitrogen and phosphorus fertilizer on biomass yield, chemical composition and nutritive value of German grass (*Echinocholacrusgalli*) at two stage of maturity. *M.Sc. (Agri.) Thesis*, Bangladesh Agricultural University, Mymensingh, Bangladesh.

Muttappanavar R K and Shekara B G, 2023, Growth, yield and quality of hedge lucerne (*Desmanthus virgatus* (L.) Willd.) as influenced by different agro-techniques in Southern Dry Zone of Karnataka. *Forage Research*, 48(4): 487-493.

Mynavathi V S, Valli C and Gunasekeran S, 2021, Effect of harvesting interval and cutting height on forage yield and proximate composition of hedge lucerne (*Desmanthus virgatus* L.) in *Cocosnucifera* based horti-pasture system. *Range Management and Agroforestry*, 42(2): 301-306.

Radhakrishnan L, Murugan M and Sivakumar T, 2007, Biomass yield, chemical composition and nutritive value of *Desmanthus virgatus* (Hedge lucerne) for sheep. *Animal Nutrition Feed Technology*, 7(1): 119-123.

Sheta B T, Kalyanasundaram N K and Patel K C, 2010, Quality parameters and plant nutrient ratios of forage pearl millet as influenced by nitrogen, potassium and sulphur levels in loamy sand soils of Anand. *Asian Journal of Soil Science*, 5(1): 116-121.

Vidyashree B S, Kubsad V S, Shivakumar B G, Anilkumar G K and Manjunath H, 2023, Fodder productivity and economics of berseem cultivation as influenced by varieties, row spacing and nutrient levels in transitional tract of peninsular India. *Journal of Farm Sciences*, 36(2): 150-153.

Wangchuk K, Rai K H, Nirola T, Dendup C and Mongar D, 2015, Forage growth, yield and quality responses of Napier hybrid grass cultivars to three cutting intervals in the Himalayan foothills. *Tropical Grasslands*, 3: 142-150.