

MALAVIKA T. SAJEEV*, G. U. PREMA*, S. I. HARLAPUR AND B. ARUNKUMAR

Department of Plant Pathology, College of Agriculture, Dharwad

University of Agricultural Sciences, Dharwad - 580 005, India

*E-mails: malavikats12@gmail.com, premagu@uasd.in

(Received: August, 2025 ; Accepted: December, 2025)

DOI: 10.61475/JFS.2025.v38i4.23

Abstract: Maize (*Zea mays* L.), a major cereal crop and a key component of global food and feed systems, faces increasing productivity threats from fungal diseases. Among these, Pokkah boeng, caused by the *Fusarium* species complex, has gained prominence in warm and humid maize-growing regions. To assess the prevalence and distribution of Pokkah boeng in northern Karnataka, a systematic roving survey was conducted during the *kharif*, *rabi* and summer seasons across five major maize-growing districts, Belagavi, Davangere, Dharwad, Gadag and Haveri. Disease incidence varied significantly across locations, ranging from 11.99 to 37.67 per cent, with Belagavi showing the highest mean incidence (25.22%) and Davangere the lowest (17.68%). Higher incidence was associated with black soils, irrigated conditions and intercropping with sorghum or sugarcane. The disease was most severe during the *kharif* season, coinciding with warm and humid conditions favourable for *Fusarium* infection. The study establishes baseline data on Pokkah boeng occurrence in Karnataka and underscores the influence of climatic, edaphic and cropping factors on its prevalence, providing critical inputs for disease management.

Key words: *Fusarium*, Karnataka, Maize, Pokkah boeng, Survey

Introduction

Maize (*Zea mays* L.) is one of the most extensively cultivated cereal crops globally and serves as a cornerstone of global agriculture. Domesticated from teosinte in Central America approximately 9,000 years ago, maize has played a pivotal role in the evolution of human civilizations (Sawers and Leon, 2011). Today, it remains a staple food for billions, providing a major source of energy and nutrients. Beyond its dietary importance, maize is also a critical industrial raw material used in livestock feed, biofuel production and starch-based industries, including the manufacture of high-fructose corn syrup. Its broad genetic diversity and adaptability to varied agro-climatic conditions have also made it an important model organism for genetic, physiological and breeding research.

Despite its global and national importance, maize production is constrained by several abiotic and biotic stresses that significantly reduce yield and grain quality. Among the biotic constraints, fungal diseases caused by *Fusarium* species have emerged as major challenges in recent years. Pokkah boeng, an emerging disease caused by members of the *Fusarium* species complex, has become increasingly prevalent in warm and humid maize-growing regions. The disease is characterized by chlorosis along leaf margins, twisting and distortion of upper leaves, and, in severe cases top rot, which can lead to substantial yield losses (Sajeev *et al.*, 2025). Furthermore, as several *Fusarium* species are capable of producing mycotoxins such as fumonisins, the occurrence of Pokkah boeng also raises significant concerns regarding food and feed safety.

In India, maize cultivation is rapidly expanding across diverse agro-climatic zones, including Karnataka, where favourable environmental conditions may promote the

development and spread of *Fusarium*-associated diseases. However, systematic data on the prevalence and distribution of Pokkah boeng in maize and this region remain limited. Therefore, a field survey was conducted to assess the incidence and severity of Pokkah boeng disease in major maize-growing areas of Karnataka. The study aims to generate baseline information on disease occurrence under local field conditions, which is essential for understanding regional disease dynamics, identifying susceptible hybrids, and developing effective management strategies.

Material and methods

A systematic random roving survey was conducted during the *kharif*, *rabi* and summer cropping seasons of 2024-25 across the major maize-growing districts of northern Karnataka, namely Belagavi, Davangere, Dharwad, Gadag and Haveri, to determine the prevalence and incidence of Pokkah boeng disease (Fig. 1).

Within each selected taluk, two to four representative villages were surveyed depending on the extent of maize cultivation. In each village, fields under active maize cultivation were randomly chosen for observation. From each field, four quadrants measuring 10 m² were demarcated to record disease incidence. The number of visibly infected plants in each quadrant was counted, and the disease incidence (DI) was calculated using the formula proposed by Wheeler (1969):

$$\text{Disease incidence} = \frac{\text{Total number of plants infected}}{\text{Total number of plants observed}} \times 100$$

Relevant information such as field location, crop variety, and cropping history was also recorded during the survey. Characteristic disease symptoms, including leaf margin chlorosis, wrinkling, twisting of upper leaves, and top rot, were documented to confirm Pokkah boeng occurrence.

Results and discussion

The survey conducted across the major maize-growing districts of northern Karnataka revealed a variable incidence of Pokkah boeng disease, ranging from 11.99 to 37.67 per cent (Table 1). The highest incidence was recorded in Inchal village of Belagavi district (37.67%), while the lowest was observed in Hukkeri village (11.99%). Among taluks, Ramdurg recorded the highest mean incidence (28.67%), whereas Savanur showed the lowest (14.00%). Across districts, Belagavi exhibited the highest mean incidence (25.22%), followed by Gadag (24.15%), while Davangere recorded the lowest (17.68%). The overall mean disease incidence across locations was 22.78 per cent (Fig. 2).

Disease severity varied considerably among districts, which could be attributed to differences in climatic conditions, cropping patterns, soil types and varietal susceptibility. The highest incidences were recorded in regions characterized by warm and humid weather, particularly during the *kharif* season, conditions that favour *Fusarium* infection and sporulation.

In most surveyed locations, typical Pokkah boeng symptoms such as wrinkling, twisting and rolling of leaves

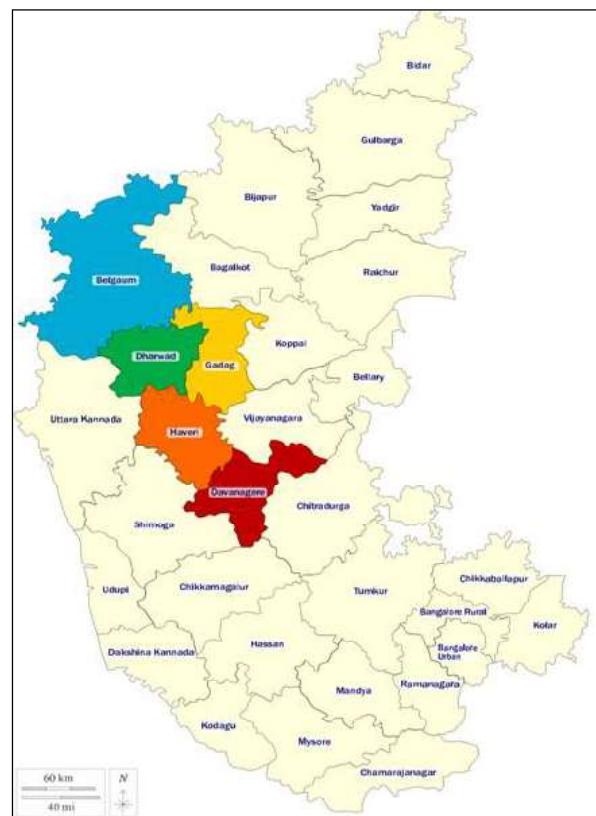


Fig 1. Survey for the incidence of Pokkah boeng disease of maize in northern Karnataka during *kharif*, *rabi* and Summer, 2024

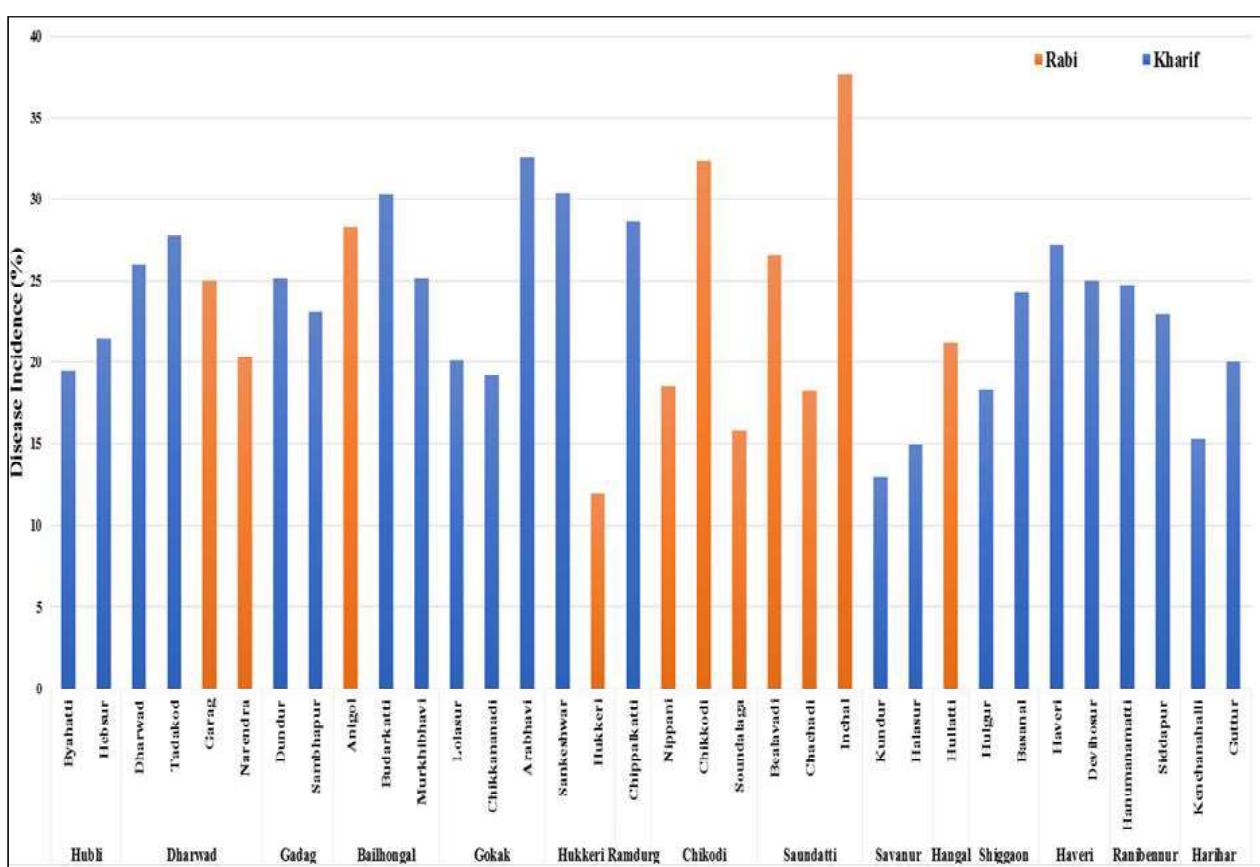


Fig 2. Incidence of Pokkah boeng disease of maize during *kharif*, *rabi* and Summer seasons, 2024

Survey on the prevalence of Pokkah boeng

Table 1. Survey for Pokkah boeng disease incidence in the northern parts of Karnataka during 2024-25

District	Taluk	Village	Soil type	Rainfed/ Irrigated	Area (in acres)	Genotype/ Hybrid	Stage of the crop	Symptoms observed	Other diseases noted	Presence or absence of sugarcane/ sorghum	PB disease incidence/ (%)
<i>Kharij</i>											
Dharwad	Hubli	Byahatti Hebsur	Red Black	Rainfed Rainfed	1.5	PAC 751 ADV 9293	Flowering Flowering	W W	TLB TLB, CLS	-	19.50
Dharwad	Dharwad	Black	Irrigated	2	DKC 9141	Physiological Maturity	W, T, R Milky stage	W, T, R W, T, TR	TLB, MLB, C.Rust, FSR TLB, CR,FSR	-	21.50
	Tadakod	Black	Irrigated	2	S6668	Milky stage	W, T, TR	W, T, TR	TLB, CR,FSR	S	26.00
Gadag	Gadag	Dundur Sambhapur	Black Black	Irrigated Irrigated	2.5	Arjun DKC 9133	Vegetative stage Flowering	W W	TLB TLB, CLS	-	27.80
	Bailhongal	Budarkatti Murklibhavvi	Black Black	Irrigated Irrigated	2	Arjun 900 M Gold	Vegetative stage Milky stage	W W, R	TLB TLB, C.rust	-	26.90
	Gokak	Lolasur Chikkakanadi Arabhavi	Black Red Black	Rainfed Rainfed Irrigated	1 3 5	ADV 9293 ADV 9293 DKC 9126	Flowering Flowering Vegetative stage	W W W, T, R	TLB TLB, CR	-	25.20
	Hukkeri	Sankeshwar	Black	Irrigated	1.5	P 3501	Vegetative stage	W	TLB, C.rust	-	23.10
	Ramdurg	Chippalkatti	Black	Irrigated	3	NK 6110	Vegetative stage	W	TLB, C.rust	-	24.15
		Savanur	Red Red	Irrigated Rainfed	1.5 5	NK 6240 P 3302	Maturity stage Vegetative stage	W W	TLB TLB, CLS	-	30.30
		Shiggaon	Hulgur Basanal	Red Black	2	Target NK 6240	Maturity stage	W	TLB TLB	-	25.20
		Haveri	Haveri Devihosur	Black Black	1.5 3.5	NK 6110 S6668	Vegetative stage Vegetative stage	C, W W, T	TLB, C.rust, CLS	-	27.75
		Ranebennur	Hanumanamatti Siddapur	Black Black	2	DKC 9133 DKC 9133	Vegetative stage Vegetative stage	W, T, R W	CR TLB	-	20.12
		Davangere	Harihar	Red Red	1	NK 6110 DKC 9133	Vegetative Vegetative stage	T, SG W, C	TLB	-	19.20
		Rabi	Dharwad	Garag Narendra	3	P3501 DKC 9141	Vegetative stage Grain filling	T, R W, R	TLB, CLS TLB, CLS	-	32.56
					5					S	24.15
										Mean	20.34
										Mean	22.25

cont....

Location	District	Village	Genotype	Soil Type	Irrigation	Stage	Target	Flowering	W	C.rust, TLB, CLS		S	Mean
										W	TLB, C.rust		
Belagavi	Bailhongal	Anigol	Black	Irrigated	3	Target	PAC 759	Silking stage	W	T, R, TR	-	-	28.32
	Hukkeri	Hukkeri	Red	Rainfed	2.5		P3501	Vegetative	W	W	TLB, C.rust	-	11.99
Chikkodi	Nippani	Black	Irrigated	2		Target	DKC 9141	Vegetative	T, R, TR	-	-	-	11.99
	Chikkodi	Black	Irrigated	1		DKC 9141		Vegetative	W	-	-	S	17.56
	Soundalaga	Black	Irrigated	1.5					W, T	TLB	-	-	32.36
Saundatti	Belavadi	Black	Irrigated	5		P 3302	Vegetative		T, R	FSR	-	-	15.77
	Chachadi	Black	Irrigated	4		PAC 751	Milky stage		T, R	-	-	Sc, S	21.90
	Inchal	Black	Irrigated	6.25		DKC 9126	Vegetative		R	-	-	Mean	26.54
Haveri	Hangal	Hullatti	Red	Irrigated	1	ADV 9293	Vegetative		R	-	-	Sc, S	18.23
										-	-	Mean	37.67
										-	-	Mean	27.48
										-	-	Mean	18.20
										-	-	Mean	18.20

W = Wrinkling of leaves, T = Twisting of leaves, R = Rolling of leaves, TR = Stunted growth, SG = Top rot, SG = Sorghum, CR = Charcoal rot, CLS = Curvularia leaf spot, FSR = Fusarium stalk rot, C.rust = Curvularia leaf spot, TLB = Turcicum leaf blight, CLS = Curvularia leaf spot, FSR = Fusarium stalk rot, CR = Charcoal rot, SG = Sugarcane, S = Sorghum, Sc = Sugarcane

were observed, often progressing to top rot at later stages. Other foliar diseases frequently recorded in association included Turcicum Leaf Blight (TLB), Curvularia Leaf Spot (CLS), Common Rust and Maydis Leaf Blight (MLB). Stalk rots such as Charcoal Rot (CR) and Fusarium Stalk Rot (FSR) were also present, indicating overlapping infection pressure from multiple *Fusarium* species.

Disease incidence was generally higher during the *kharif* season (23.28%) compared to the *rabi* season (22.83%) (Table 2). This seasonal difference likely resulted from higher humidity and rainfall during *kharif*, which favour disease development and pathogen spread. Similar trends have been reported by Supriya (2024), who observed increased Pokkah boeng severity in the rainy season across Karnataka.

Soil type also appeared to influence disease occurrence. Black soils, predominant in Belagavi, Haveri and parts of Dharwad, recorded a higher mean disease incidence (25.44%)

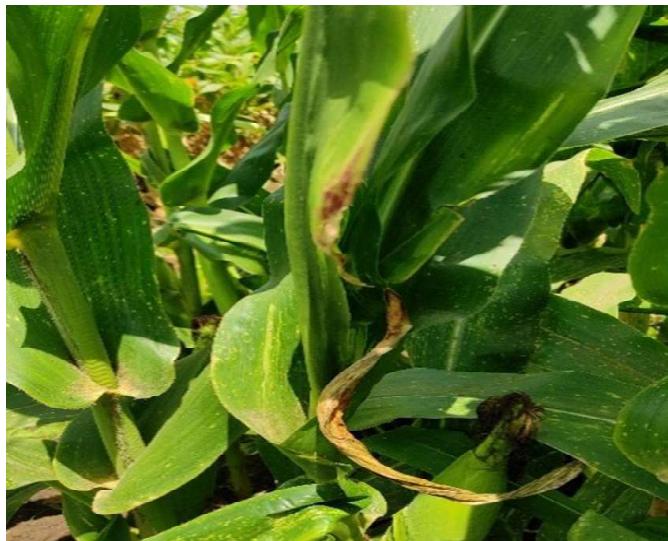
Table 2. Mean per cent disease incidence of Pokkah boeng disease of maize caused by *Fusarium* spp.

Particulars	Mean Per cent disease incidence
I. Season	
<i>Kharif</i>	23.28
<i>Rabi</i>	22.83
II. Genotype	
900 M Gold	25.20
ADV 9293	19.63
Arjun	27.75
DKC 9126	35.12
DKC 9133	22.72
DKC 9141	20.70
NK 6110	23.74
NK 6240	18.63
P 3302	20.77
P 3501	24.03
PAC 751	18.87
PAC 759	11.99
S 6668	26.40
Target	26.33
III. Soil type	
Black soil	25.44
Red soil	16.72
IV. Presence or absence of sorghum/ sugarcane	
Sorghum	28.28
Sugarcane	28.47
Both	33.99
Absent	20.81
V. Irrigated/Rainfed	
Irrigated	24.70
Rainfed	18.24
VI. Stage of the crop	
Vegetative	24.72
Flowering	21.96
Milky stage	23.74
Silking stage	11.99
Grain filling	20.34
Physiological maturity stage	20.39

Development of small streaks on leaves

Chlorosis of leaf

Wrinkling of leaves


Twisting of leaf

Rolling of the leaf

Stunted growth of the plant

Top rot symptom

compared to red soils (16.72%). The higher moisture retention capacity of black soils likely created favourable microclimatic conditions for *Fusarium* growth and survival. In contrast, red soils with better drainage tended to suppress disease development. Irrigation practices also influenced disease expression. Fields under irrigated conditions showed a higher incidence (24.70%) than rainfed fields (18.24%), possibly due

to transient waterlogging that promotes *Fusarium* infection. The observation aligns with findings in sugarcane by Manjula *et al.* (2023), who reported enhanced Pokkah boeng severity in moist environments.

Among crop growth stages, the vegetative stage showed the highest mean incidence (24.72%), while disease intensity

generally declined in later stages, possibly due to tissue maturation and reduced pathogen colonization efficiency. Varietal differences were also evident. The genotype DKC 9126 showed the highest disease incidence (35.12%), indicating its susceptibility to *Fusarium*-associated Pokkah boeng. This is consistent with earlier observations by Supriya (2024), who reported that hybrids belonging to the DKC series were particularly prone to this disease. Other commonly affected genotypes included PAC 751, ADV 9293 and P 3501.

The survey highlighted a clear association between disease prevalence and cropping patterns. Fields intercropped with sorghum and sugarcane or located near their cultivation zones recorded higher incidence levels (33.99%) compared to those with single or alternate crops (28-29%). Villages such as Tadakod, Budarkatti, Arabhavi and Inchal, where sugarcane and sorghum were cultivated alongside maize, consistently exhibited elevated disease intensity. These findings support the hypothesis that sorghum and sugarcane act as collateral hosts, harbouring *Fusarium* inoculum that can persist between cropping seasons and infect subsequent maize crops.

District-wise analysis indicated that Belagavi and Gadag recorded higher mean incidence than other districts, likely due to higher humidity, more extensive maize cultivation, and the presence of alternative host crops. In contrast, Davangere recorded a comparatively low incidence (17.68%), possibly due

to better-drained red soils and less favourable conditions for *Fusarium* proliferation.

Isolation and identification of the causal organism from infected samples confirmed the presence of different *Fusarium* spp., based on both morphological and molecular characteristics. These results corroborate earlier findings by Parime *et al.* (2021) and Harlapur *et al.* (2023), who reported similar pathogen profiles in Pokkah boeng-affected maize. The disease incidence patterns observed in the present study are comparable with reports from other maize-growing regions of Karnataka. Supriya (2024) recorded the highest incidence (29.32%) in Dharwad during 2023–24, while Bagalkot reported lower incidence (22.34%).

Conclusion

The study revealed that Pokkah boeng disease is widely prevalent in the maize-growing regions of northern Karnataka, with notable variation across districts and management practices. Disease incidence was influenced by climatic factors, soil type, cropping system and varietal susceptibility. Higher incidence was associated with black soils, humid environments, irrigation, and intercropping with sorghum or sugarcane. The findings emphasize the need for integrated management strategies, including the selection of resistant hybrids, improved field drainage and crop rotation to minimize pathogen carryover through collateral hosts.

References

Harlapur S I, Iliger K, Salakinkop S R, Talekar S C, Kachapur R M, Balol G, Patil S B and Tippannavar P S, 2023, First report of *Fusarium verticillioides* causing Pokkah boeng disease on maize in India. *Plant Disease*, 107(4): 1239-1245.

Manjula, Pratibanda, Verma P, Kumar V and Rani C, 2023, Incidence and distribution of sugarcane Pokkah boeng disease in Vishakhapatnam district of Andhra Pradesh, India. *The Pharma Innovation Journal*, 12(11): 963-969.

Parime B C, Penumatsa K V, Injeti S K and Hooda K S, 2021, First report of Pokkah boeng of maize (*Zea mays* L.) caused by *Fusarium luffae* in India. *Indian Phytopathology*, 75(1): 293-295.

Sajeev M T, Prema G U, Salakinkop S R, Kachapur R M, Talekar S C, Harlapur S I and Arunkumar B, 2025, First report of *Fusarium acutatum* as the causal agent of Pokkah boeng disease of sorghum in northern Karnataka, India. *Journal of Advances in Biology and Biotechnology*, 28 (7): 319-331.

Sawers R J H and Leon N L S, 2011, Origins of maize: A further paradox resolved. *Frontiers in Genetics*, 53(2): 12344-12345.

Supriya, 2024, Investigations on Pokkah boeng disease of maize caused by *Fusarium* spp., *Ph.D. Thesis*, University of Agricultural Sciences, Dharwad, Karnataka, India.

Wheeler T J, 1969, An introduction to plant diseases. John Wiley and sons limited, London.